

December 3, 2012

Regional Administrator
USEPA Region 5
Mail Code SR-6J
77 West Jackson Boulevard
Chicago, Illinois 60604-3507

Attn: Michelle Kerr

John Jones Vertellus Specialties, Inc. 201 North Illinois Street, Suite 1800 Indianapolis, Indiana 46204 Director, Remediation Site Remediation Section Minnesota Pollution Control Agency 520 Lafayette Road North St. Paul, Minnesota 55155 Attn: Nile Fellows

Subject: United States of America, et al. vs. Reilly Tar & Chemical Corporation, et al. File No. Civ. 4-80-469 CD-RAP Section 3.3

Dear Project Leaders,

The City of St. Louis Park has prepared the attached "Revised Annual Monitoring Report for 2011" in accordance with the October 1, 2012 letter from U.S. EPA and MPCA. This revised report contains three new attachments that provide supplemental information. Future annual monitoring reports will contain a disk of all laboratory reports for the given year, as requested. The 2011 laboratory reports, which were appended to the original March 15, 2012 submittal, were not repeated in the enclosed document because there were no modifications to them.

You may direct any questions or comments to this office.

Sincerely,

William M. Gregg

William M. Tregg

Project Leader for the City of St. Louis Park

cc: Scott Anderson, City of St. Louis Park

REVISED ANNUAL MONITORING REPORT FOR 2011

SUBMITTED TO THE

REGIONAL ADMINISTRATOR UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION V

EXECUTIVE DIRECTOR MINNESOTA POLLUTION CONTROL AGENCY

BY

THE CITY OF ST. LOUIS PARK, MINNESOTA

PURSUANT TO CONSENT DECREE - REMEDIAL ACTION PLAN SECTION 3.4

UNITED STATES OF AMERICA, ET AL.

VS.

REILLY TAR & CHEMICAL CORPORATION, ET AL.

UNITED STATES DISTRICT COURT DISTRICT OF MINNESOTA CIVIL NO. 4-80-469

December 3, 2011

CONTENTS

1.0	INTRODUCTION	1-1
2.0	MT. SIMON-HINCKLEY AQUIFER	2-1
3.0	IRONTON-GALESVILLE AQUIFER	3-1
4.0	PRAIRIE DU CHIEN-JORDAN AQUIFER	4-1
5.0	ST. PETER AQUIFER	5-1
6.0	PLATTEVILLE AQUIFER	6-1
7.0	DRIFT AQUIFER	7-1
8.0	DATA QUALITY ASSESSMENT	8-1

APPENDICES

Please refer to the Guide to Appended Laboratory Results for all 2011 samples. This guide precedes the Appendices.

ATTACHMENTS

Attachment A: Graphs of PAH Concentrations in Reilly Site Wells Attachment B: Water Elevation Measurements in Reilly Site Wells

Attachment C: Logs for B149, W33R, W122, and W410

LIST OF TABLES

- **Table 1** Historical Summary of Other PAH and CPAH Analytical Results 1988 through 2011, SLP 11, 12, 13, 17
- **Table 2** Historical Summary of Other PAH and CPAH in Well W105, 1988 through 2011
- **Table 3** Historical Summary of Other PAH and CPAH Analytical Results for Prairie Du Chien-Jordan Aquifer Wells, 1988 through 2011
- **Table 4** Historical Summary of Other PAH and CPAH Analytical Results for St. Peter Aquifer Wells, 1988 through 2011
- **Table 5** Historical Summary of Other PAH and CPAH Analytical Results for Platteville Aquifer Wells, 1988 through 2011
- **Table 6** Historical Summary of Other PAH and CPAH Analytical Results for Drift Aquifer Wells, 1988 through 2011

LIST OF FIGURES

- **Figure 1** Summary of Groundwater Monitoring Results For the Mt. Simon-Hinckley Aquifer 2011
- **Figure 2** Summary of Groundwater Monitoring Results For Prairie Du Chien–Jordan Aquifer First Half, 2011
- **Figure 3** Summary of Groundwater Monitoring Results For Prairie Du Chien–Jordan Aquifer Second Half, 2011
- Figure 4 Summary of Groundwater Monitoring Results For St. Peter Aquifer in 2011
- Figure 5 Summary of Ground water Monitoring Results For Platteville Aquifer in 2011
- Figure 6 Summary of Ground water Monitoring Results For Drift Aquifer in 2011

ii December, 2012

1.0 INTRODUCTION

Pursuant to Section 3.4 of the Consent Decree - Remedial Action Plan (CD-RAP) in the case of the United States of America, *et al.* vs. Reilly Tar & Chemical Corporation, *et al.*, this report presents the results of all chemical analyses and water level measurements for calendar year 2011 that are not presented in previous reports.

The ground water monitoring conducted in 2011 was performed in accordance with the methods and procedures identified in the 2011 Sampling Plan. The City of St. Louis Park (City) has overall responsibility for conducting the ground water monitoring required by the CD-RAP. In accordance with the 2011 Sampling Plan, AECOM, Inc. (AECOM) collected ground water samples from monitoring wells. TestAmerica Laboratories, Inc. (TA) and Pace Analytical Services (Pace) performed the analyses for PAH. Summit Envirosolutions, Inc. (Summit) assisted with various reporting and data validation tasks.

The 2011 monitoring data are presented separately for each aquifer, starting with the Mt. Simon-Hinckley Aquifer, which is the deepest aquifer below the ground surface, and ending with the Drift Aquifer, which is the uppermost aquifer monitored. A series of maps has been prepared to help present the monitoring data. Maps for the Prairie du Chien-Jordan, St. Peter, Platteville, and Drift Aquifers are contained in this report.

A series of tables has been prepared for each aquifer to help present the analytical results since 1988. These tables illustrate trends in PAH concentrations in the ground water for each monitoring well. The shaded tables represent wells that are no longer monitored as part of the Sampling Plan, were not scheduled to be sampled, or wells that were unavailable for sampling during the scheduled time. Graphs of the PAH concentrations are shown in Attachment A.

A laboratory data review was conducted to assess the quality of the laboratory data. The data quality assessment (DQA) can be found in Section 9.0 of this report. Additionally, a total of four of the data packages (two from each laboratory) underwent full data validation. Each appendix includes a laboratory data package for a set of samples collected and submitted for analysis at the same time. Attached to the end of selected data packages are DQA reports summarizing the quality of the analytical data contained in each package. The data Appendices are organized chronologically throughout the year, as shown in the Guide to Appended Laboratory Results immediately preceding the Appendices.

2.0 MT. SIMON-HINCKLEY AQUIFER

St. Louis Park municipal water supply wells SLP11 and SLP12 were sampled once in 2011. Well SLP13 was out of operation due to maintenance for the year and well SLP 17 has not been used since 2000 and was not available for sampling due to damaged pump and controls. Neither the City nor the Minnesota Department of Health (MDH) issued permits for any new Mt. Simon-Hinckley Aquifer wells within the boundaries of the City of St. Louis Park (encompassing greater than a one mile radius around well W23 as specified in Section 5.3.2 of the CD-RAP) in 2011. The 2011 analytical data for the Mt. Simon-Hinckley wells are shown on Figure 1. The laboratory reports of the analytical data are included in the Appendices. The Guide to Appended Laboratory Results for all of 2011 precedes the Appendices.

The advisory levels for the sum of benzo(a)pyrene and dibenz(a,h)anthracene, carcinogenic PAH, and Other PAH are 3, 15 and 175 nanograms/liter (ng/l or parts per trillion), respectively. Table 1 lists the historical results since 1988 of other PAH and carcinogenic PAH data collected from the three wells that are still in service. Well SLP17 has been out of service since 2000 and has not been sampled since then. The 2011 data indicate that the sums of the concentrations of benzo(a)pyrene and dibenz(a,h)anthracene, carcinogenic PAH, and other PAH in wells SLP11 and SLP12 were below the advisory levels for these compounds. It appears that the Mt. Simon-Hinckley Aquifer has not been significantly affected by contaminants originating from the former Reilly Tar & Chemical Corporation (Reilly) site.

3.0 IRONTON-GALESVILLE AQUIFER

Analytical results from ground water samples collected during 1988 through 1991 from well W105 had consistently met the criterion (less than 10 parts per billion [ppb] total PAH) for discontinuing the 25 gallons per minute (gpm) pumping rate. Therefore, in accordance with CD-RAP Section 6.1.5, the pump in well W105 was inactivated on December 23, 1991, and remains inactivated. Neither the City nor the MDH issued permits for any new Ironton-Galesville Aquifer wells within the boundaries of the City of St. Louis Park (encompassing greater than a one mile radius around well W23 as specified in Section 6.2.1 of the CD-RAP) in 2011.

The historical analytical results for well W105 from 1988 through 2010 are presented on Table 2 and are shown graphically in Attachment A, page 20. PAH concentrations exceeded the 10ppb cessation criteria in 2008 and 2010 due to purging problems with the original sample. Confirmation sampling conducted indicated concentrations that were consistent with previous years. Apparently the concentration of PAH in samples from well W105 are related to purging time. This is likely due to PAH sorbed to the permanent pump, drop pipe, and casing installed in the well. Without the two samples that were collected with insufficient purging, the total PAH concentrations in well W105 have been trending downward over the last 10 years (see chart below). W105 will next be sampled in 2012.

4.0 PRAIRIE DU CHIEN-JORDAN AQUIFER

Prairie du Chien-Jordan Aquifer wells were monitored in accordance with the 2011 Sampling Plan. However, some wells listed in the sampling plan (because they are identified in the CD-RAP) were not available for one or more sampling events in 2011. These wells included:

- W29 was due to be sampled once in 2011. Flame Industries vacated the property and the well was not operational for the year.
- W40 and W70 were due to be sampled once in 2011. These two Prairie du Chien-Jordan Aquifer industrial wells have been abandoned in prior years.
- E7 was due to be sampled once in 2011. The City of Edina is not using this well pending completion of a VOC treatment facility, and did not provide access to the well for PAH sampling.
- SLP 6 was due to be sampled quarterly in 2011. It was sampled in the first three quarters of the year, but was unavailable for sampling in the fourth quarter due to maintenance.
- W119 was due to be sampled quarterly in 2011 but was only available for sampling in the second and third quarters. During the off season, the golf course winterizes the well and did not provide access.

An annual sample is collected from Well SLP10 or SLP15. In 2011, a sample was collected from SLP10. Wells SLP14, SLP16, and W405 or W406 are required to be sampled every other year. The recent sampling schedule has these wells sampled on even-numbered years (e.g., 2012, 2014, and 2016). Samples were collected from these wells in 2010; therefore, these wells will be sampled again in 2012.

In addition to water quality monitoring, ground water elevations were recorded at most municipal Prairie du Chien-Jordan Aquifer wells that are equipped with pressure transducers. A total of 13 wells were used to collect ground water samples during 2011. Water level data are provided in Attachment B. The laboratory reports of the analytical data are included in the Appendices. The Guide to Appended Laboratory Results for all of 2011 precedes the Appendices.

Summaries of analytical data are shown in Figures 2 and 3, and Figure 2 includes groundwater elevation contours. The direction of ground water flow in the Prairie du Chien-Jordan Aquifer is strongly affected by pumping wells. Municipal wells in St. Louis Park and surrounding cities pump at greater than 1,000 gpm and have a considerable effect on localized ground water flow. However, these wells systematically turn on and turn off; therefore, the general ground water flow is affected by which wells are pumping and at what rates. According to several literature resources, including the USGS (Water Supply Paper 2211, 1984), Norvitch and others (Water Resources Outlook of the Minneapolis and St. Paul Metropolitan Area, 1973), the general ground water flow in the Prairie du Chien-Jordan Aquifer is toward the east.

Table 3 presents a historical summary of analytical results from 1988 through 2011 for Prairie du Chien-Jordan Aquifer wells. Graphs showing the total PAH concentrations are included in Attachment A. St. Louis Park wells SLP10 and SLP4 continue to show decreasing concentrations of PAH. Water quality results for the 2011 samples from well SLP4 meet the CD-RAP drinking water criteria without GAC treatment. In fact, SLP4 has met the CD-RAP drinking water criteria since 2002 (see Attachment A page 65). However, the City continues to treat the water from well SLP4. Groundwater samples from Edina municipal wells E2, E3 and E15 continue to indicate stable concentrations of PAH (Attachment A pp. 76, 77, and 80). Edina well E13 samples have shown an increasing trend in PAH concentrations since 1996 (Attachment A, p. 79). Well E13 PAH results appear to have stabilized below the CD-RAP drinking water criteria in the past few years, as shown in the chart below.

The CD-RAP relies on pumping wells to control the gradients and groundwater flow directions in the Prairie du Chien-Jordan Aquifer. The effectiveness of the gradient control system in the Prairie du Chien-Jordan Aquifer can be evaluated by examining the analytical data on the extent and magnitude of PAH in the aquifer. The water quality data in the Prairie du Chien-Jordan Aquifer indicate that concentrations of PAH exceeding the CD-RAP drinking water standards have not migrated to new areas such as Edina. The only samples collected in 2011 that exceeded the CD-RAP drinking water criteria were collected from well W23 on site, SLP10 northeast of the site, and well W403 located approximately two miles east of the site. The PAH in well W403 is likely related to foreign materials in the well as explained below. A depiction of the inferred area of the Prairie du Chien-Jordan Aquifer containing PAH in concentrations above the CD-RAP drinking water criteria is shown in Figures 2 and 3. The inferred areas shown in Figures 2 and 3 were based on 2011 analytical results coupled with historical data from all of the wells including wells W70 and W40 which are abandoned and no longer monitored.

The effectiveness of the constant pumping of wells SLP10 (or SLP15) and SLP4 is further highlighted by historical water quality results in well W48. Well W48 has shown a pattern of increased PAH concentrations when pumping compared to non-pumping conditions. Well W48 PAH concentrations are shown on page 17 of Attachment A. In the late 1980s when well W48 pumped at a higher rate and was used for once-through cooling water at the hospital, PAH concentrations were greater than one part per billion. After pumping was limited to irrigation use only, the PAH concentrations dropped and have remained below one part per billion. This pattern demonstrates that the well is located on the southern margin of the area of the Prairie du Chien-Jordan Aquifer containing PAH in concentrations above the CD-RAP drinking water criteria.

An estimate of the capture area of well SLP4 could be calculated using average hydrogeologic parameters of the Prairie du Chien-Jordan Aquifer and assuming these aquifer attributes in three dimensions. Using the formula Q=kiA (well discharge or pumping rate equals the product of hydraulic conductivity, hydraulic gradient, and cross-sectional area of flow to the well), the estimated capture area of well SLP4 is nearly 2 miles wide using a pumping rate of 985 gallons per minute (the 2011 average pumping rate), a hydraulic conductivity of 42 ft/day (Metro Model mean), a gradient of 0.002 (USGS, WRI Report 85-4087) and an aquifer thickness of 216 feet (STS, 2006).

The sums of the concentrations of benzo(a)pyrene and dibenz(a,h)anthracene and carcinogenic PAH were below the drinking water criteria in all of the Prairie du Chien-Jordan Aquifer municipal supply wells during 2011. However, an anomalous result was obtained from the extended analysis performed by Test America on the September 13, 2011 sample from well SLP10 after carbon treatment (SLP10T). The extended analysis reported a total of 62.8 ng/l of carcinogenic PAH which is higher than the drinking water criteria and higher than the results for contemporaneous samples collected from well SLP10 before and after carbon treatment (analyzed for 31 PAH

compounds). The data report for this analysis is provided in Appendix I. None of the "extra" compounds on the extended list contributed to the elevated CPAH total. Also, the split sample sent to Pace laboratory which was analyzed for 25 CPAH did not detect any CPAH (Appendix J). Additional treated water samples were collected in accordance with CD-RAP Section 4.3.2. The reanalysis (Appendixes L and M) showed that no CPAH were detected, although relatively high levels of Other PAH were detected in the blanks. As a result of these tests, the carbon is due to be replaced in 2012 in accordance with the normal replacement schedule.

Overall, the graphs in Attachment A show that the amount and distribution of PAH in the aquifer in 2011 was consistent with historical patterns and continues to show a stable or decreasing trend of PAH concentrations in 18 of the 23 wells. Prairie du Chien – Jordan Aquifer wells graphed in Attachment A include the following wells (page number):

W23 (p. 10)	W119 (p. 22)	SLP wells (pp. 65 to 75)
W29 (p. 13)	W401 (p. 34)	Edina wells (pp. 76 to 80)
W40 (p. 16)	W402 (p. 35)	Hopkins well H6 (p. 81)
W48 (p. 17)	W403 (p. 36)	MTKA6 (p. 82)
W70 (p. 18)	W406 (p. 37)	

Of the 23 Prairie du Chien – Jordan Aquifer graphs shown in Attachment A, increasing trends are shown for wells W403, SLP6, E7, E13, and H6. During low-flow sampling in 2011 an obstruction was encountered in well W403 at a depth of approximately 240 feet. On October 4, 2012 this well was inspected with a down-hole television camera and was shown to contain debris including branches, wood, grass, and soil. The City is of the opinion that these materials likely affected PAH concentrations in samples from the well. The City is in the process of cleaning this well to remove the debris.

5.0 ST. PETER AQUIFER

Eleven St. Peter Aquifer wells were monitored in 2011 in accordance with the 2011 Sampling Plan. In addition to water quality monitoring, ground water elevations were measured in St. Peter Aquifer wells throughout the year. Summaries of analytical data and ground water elevations are shown in Figure 4. Laboratory reports of the analytical data are included in the Appendices. The Guide to Appended Laboratory Results for all of 2011 precedes the Appendices. Table 4 presents a historical summary of analytical results from 1988 through 2011 for St. Peter Aquifer wells (graphs are in Attachment A).

The groundwater contours in Figure 4 are illustrated using the water level data measured during sampling. Figure 4 also shows the estimated hypothetical capture area of well W410 as calculated from the formula Q=kiA (well discharge or pumping rate equals the product of hydraulic conductivity, hydraulic gradient, and cross-sectional area of flow to the well). The estimated capture area of well W421 is nearly 4000 feet wide using a pumping rate of 53 gallons per minute (2011 average pumping rate), a hydraulic conductivity of 13 ft/day (Metro Model mean), a gradient of 0.002 (USGS, WRI Report 90-4150) and an aquifer thickness of 100 feet (see well log for W23, USGS WSP 2211). The capture zone can also be inferred by the shape of the water elevation contours, and it extends over a relatively large portion of the study area. The uniformity of hydrogeologic characteristics of the St. Peter Aquifer tends to decrease the uncertainty of the estimated capture zone calculations and/or graphical solutions. However, some uncertainty exists due to the assumptions used concerning a uniform gradient and transmissivity of the aquifer.

With the notable exception of wells W409 and W410, PAH concentration trends at individual wells have been steady or decreasing both inside and outside the well W410 capture area (see graphs in Attachment A). Pumping at well W410 has clearly drawn higher concentrations of PAH into the well from source areas closer to the Reilly Site. Well W409 is located relatively close to the Reilly Site and PAH concentrations were initially relatively low in well W409, but increased after Well W410 began pumping in 1991 to a high in 2000 and the PAH concentrations have been decreasing since then. Pumping well W410 has apparently caused relatively high concentrations of PAH that were close to the Reilly Site to migrate downgradient into the pumping well, where concentrations continue to increase. Therefore, well W410 has had mixed effectiveness in controlling PAH: on one hand the relatively high PAH concentrations have not been found downgradient of the pumping well, but on the other hand the PAH have been spread farther downgradient from the Reilly Site.

No groundwater samples from the St. Peter Aquifer contained PAH concentrations above MDH HRLs/HBVs. The inferred area of the St. Peter Aquifer that exceeds CD-RAP drinking water

criteria is shown in Figure 4. Wells W14, W129, W409, and W410 exceeded the CD-RAP drinking water criteria in 2011. There are no known drinking water wells or other receptors downgradient from the areas containing PAH shown on Figure 4.

Pumping well W410 does not have any influence or hydraulic control on well W122 because well W122 is completed in the basal St. Peter Formation and is separated from the well W410 pumping stress by shale confining layers. Attachment C contains well logs for W410 and W122. The water quality in well W122 is not expected to change in response to pumping conditions at well W410 and PAH concentrations will remain close to the CD-RAP drinking water criteria. One sample from 2009, one sample from 2010, and many previous well W122 samples have exceeded the CD-RAP drinking water criteria. The 2011 sample from well W122 contained relatively little PAH.

6.0 PLATTEVILLE AQUIFER

In accordance with the 2011 Sampling Plan, 19 samples were collected from 16 Platteville Aquifer monitoring wells (including quarterly samples from well W421) in 2011. A second sample from well W22 was inadvertently omitted. In addition to water quality monitoring, ground water elevations were measured in Platteville Aquifer wells on the sampling dates (Attachment B). Summaries of analytical data and ground water elevations for 2011 are shown in Figure 5. Laboratory reports of the analytical data are included in the Appendices. The Guide to Appended Laboratory Results for all of 2011 precedes the Appendices.

Table 5 is a historical summary of analytical results since 1988 for Platteville Aquifer wells. The analytical results for all Platteville Aquifer wells are reported in micrograms per liter (ug/l), or parts per billion. The historical water quality data shown in Table 5 indicates a steady or decreasing trend of PAH concentrations in the Platteville Aquifer wells that were sampled in 2011 (also see graphs in Attachment A). However, the pumping of well W421 has drawn DNAPL into that well and the samples contain higher and more variable PAH concentrations as a result. Only wells W421 and W437 provided samples that contained PAH concentrations above the MDH HRLs/HBVs. The inferred areas where Platteville Aquifer groundwater exceeds the MDH and CD-RAP criteria, as based on current and historical analytical results, are shown in Figure 5.

Well W421 pumped at an average rate of 31 gpm in 2011. Figure 6 shows the estimated capture area of well W421 as derived from a calculation using the formula Q=kiA (well discharge or pumping rate equals the product of hydraulic conductivity, hydraulic gradient, and cross-sectional area of flow to the well). The estimated capture area of well W421 is approximately 800 feet wide using a pumping rate of 31 gallons per minute, a hydraulic conductivity of 187 ft/day (calculated from the well W421 aquifer test in 1988), a gradient of 0.002 (average of the gradients shown on Figure 5 for wells W20/W130 (i=0.004) and wells W434/W131 (i=0.001) and matching the gradients in the Drift Aquifer above that is hydraulically connected) and an aquifer thickness of 20 feet (see well log for W27, USGS WSP 2211).

The simplifying assumptions required for this calculation are not well matched to the anisotropic characteristics of the Platteville Aquifer. For example, a recent study calculated hydraulic conductivities of six Platteville wells ranging between 300 ft/day and 47,000 ft/day ("Hydrostratigraphy of a fractured, urban aquitard", Anderson, Runkel, and Tipping of the MGS. GSA Field Guide 24, GSA Annual Meeting, October 13, 2011). Even the aquifer thickness is debatable due to the degree of hydraulic connection between the Drift and Platteville Aquifers, which would tend to increase the effective aquifer thickness, and due to the secondary porosity in the Platteville Limestone which may provide significant flow pathways through relatively small bedding plane solution features. Thus the estimated capture area is subject to considerable professional judgment. The well W421 capture area is located in the middle of the bog area where

DNAPL is present and the largest source of PAH is believed to exist. As depicted in Figure 5, well W421 appears to be hydraulically controlling most of the bog area as required by the CD-RAP.

7.0 DRIFT AQUIFER

In accordance with the 2011 Sampling Plan, 19 samples were collected from 11 Drift Aquifer monitoring wells (including pumping wells) in 2011. Well W7 was not sampled because it was abandoned prior to 1983 by others and well W422 was inadvertently omitted from 2011 sampling. In addition to water quality monitoring, ground water elevations were measured in the Drift Aquifer wells on the sampling dates (Attachment B). Summaries of 2011 analytical data and ground water elevations are shown in Figure 6. The water level contours illustrated in Figure 6 illustrates the regional east-southeast ground water flow direction (USGS WSP 2211).

Table 6 is a summary of analytical results since 1988 of Other PAH, carcinogenic PAH, and phenolic data for the Drift Aquifer wells. The 2011 analytical results for all Drift Aquifer wells are reported in micrograms per liter (ug/l), or parts per billion. The historical water quality data shown in Table 6 and the graphs in Attachment A indicate a decreasing trend in PAH concentrations in most Drift Aquifer wells that were sampled in 2011 (well W9 increased in 2012). During the many years of groundwater monitoring at the Reilly Site, only wells W420 and W439 routinely provided samples that contained PAH concentrations above the MDH HRLs/HBVs. The inferred areas where Drift Aquifer groundwater exceeds the MDH and CD-RAP criteria, as based on current and historical analytical results, are shown in Figure 6.

The average pumping rates for wells W420 and W439 were 40 and 58 gpm, respectively in 2011. A calculation of the theoretical width of the capture area can be made based on Q=kiA (well discharge or pumping rate equals the product of hydraulic conductivity, hydraulic gradient, and cross-sectional area of flow to the well). Of these parameters, the hydraulic conductivity and its distribution in three dimensions, is the least well known value. The range of hydraulic conductivity for the Drift Aquifer can vary by several orders of magnitude. For example, the Metropolitan Council groundwater model (Metro Model 2) identified horizontal hydraulic conductivity for Quaternary deposits at 20 ft/day to 240 ft/day with a mean of 80 ft/day. Also, this calculation assumes that the gradient and aquifer thickness are constant in all directions, which greatly simplifies the natural condition.

The theoretical capture area of well W420 is approximately 800 feet wide using a pumping rate of 40 gallons per minute, a hydraulic conductivity of 80 ft/day, a gradient of 0.002 (USGS WSP 2211) and an aquifer thickness of 60 feet (well log for W33R, Attachment C). The theoretical capture area of well W439 is 1160 feet wide using a pumping rate of 58 gpm and the same other values. However, the assumptions required for these calculations are not well matched to the anisotropic characteristics of the Drift Aquifer. For example, nearby monitoring wells W9 (only 110 feet south of well W420) and W425 (approximately 72 feet northwest of well W439) do not show drawdown from the pumping wells, and several episodes of turning the pumps off and on

confirm a lack of response in the nearby monitoring wells. This lack of response may be due to till layers that act as confining layers in the local areas of the pumping wells, or other heterogeneities. Thus the three dimensional size and shape of the capture areas of the pumping wells, and the three dimensional distribution of PAH in the Drift Aquifer, are not known to a degree sufficient to fully document the effectiveness of the pumping wells.

Figure 6 shows the theoretical extent of the W420 and W439 capture areas based on the calculations presented above and well W420 appears to be hydraulically controlling most of the bog area as required by the CD-RAP. However, the capture areas shown in Figure 6 do not take into account three dimensional characteristics of the Drift Aquifer such the clay layer noted on the boring log for B149 (Attachment C) that can influence groundwater flow and PAH migration.

8.0 DATA QUALITY ASSESSMENT

In accordance with the 2011 Sampling Plan, all laboratory data packages underwent a data quality assessment (DQA). The DQA was conducted to determine whether or not the reported laboratory data may be used for decision-making purposes. Results of the data quality assessment can be found at the end of each laboratory data package. The laboratory reports of the 2011 analytical data are included in the Appendices. The Guide to Appended Laboratory Results for all of 2011 precedes the Appendices.

The basis for the review, including the elements to be reviewed and applicable validation guidelines were defined in the Quality Assurance Project Plan (QAPP). The 2011 DQA was conducted as follows. The number of samples was checked to verify that the results corresponded to the analytical requests designated on the chain of custody. The chain of custody was examined to determine the completeness pertaining to sampling dates, times, quantities, and analyses performed. The sample holding times, preservation, and cooler temperatures were noted. The method blanks, field blanks, equipment blanks, and trip blanks were examined for any contamination problems. Surrogate spike recoveries were checked to confirm they were within the range determined by the QAPP quality control (QC) limits. Matrix spikes and laboratory control samples (LCS) were reviewed to confirm they meet the QC acceptance criteria. All duplicate samples were checked for precision. In addition, sample quantitation limits (SQLs) were compared to those required in the QAPP.

A full data validation was completed on three of 15 data packages, representing 31 of 79 samples, or approximately 40% of the samples. The full data validation includes all of the items reviewed in the DQA plus a review of the gas chromatography/mass spectrometry (GC/MS) tuning, the initial and continuing calibrations, and internal standard performance.

All 15 of the 2011 laboratory data packages were reviewed during the DQA. The data packages contain usable results for all wells that were sampled in 2011. The holding times for aqueous PAH analysis require extraction to occur within seven days after collection. All sample holding times were met during 2011. Cooler temperatures for overnight shipments were all within the QAPP acceptance criteria of $4 \pm 2^{\circ}$ C. No more than one of the three surrogates used had recoveries lower than the stated laboratory QAPP control limits for any individual 2011 sample. Therefore, none of the data were qualified based on the surrogate recoveries. For all samples that were diluted for analysis, the Sample Quantitation Limits (SQLs) were checked to confirm they were adjusted accordingly.

PAH were detected in the method blanks and/or field blanks for several of the 2011 data packages. All results with method blank concentrations are qualified with a "B". All concentrations qualified with a B are included in the total PAH calculations. No samples exceeded the action levels established for each compound (the action level is 5 times the concentration found in the blank) in any of the data packages that had Method Blank contamination. All estimated data ("J" qualifier) and concentrations qualified with a B are included as part of

the PAH sums that constitute the Drinking Water Criteria and the Advisory Levels for this project. Because none of the samples exceeded the Drinking Water Criteria or the Advisory Levels based on the addition of the estimated data to the various PAH sums, the usability of the data is not compromised.

Overall, the 2011 laboratory data was found to be usable for evaluating PAH concentrations in the ground water and decision-making purposes. Criteria for validation actions were specified in the QAPP, data review worksheets or the appropriate validation guidelines and were given precedence in that order. QAPP criteria were used for surrogate, MS/MSD, and LCS recoveries. The 2011 sampling data have been reviewed and the QAPP goals for field and laboratory completeness have been met.

This project benefits from years of collecting high quality data in accordance with the Agency approved Sampling Plan and QAPP. Therefore, an additional measure of quality assurance is gained by comparing current analytical results to the historical analytical results. The findings of CPAH above the CD-RAP drinking water criteria in sample SLP10TEXTENDED-091311, and the subsequent levels of PAH found in the method blanks during the analyses of re-sampled SLP10T, indicate a concern for data quality. The laboratory could not identify a specific cause for these anomalous findings, but offered the following discussion:

"TestAmerica Denver has supported the low level analysis of polyaromatic hydrocarbons (PAHs) for the City of St. Louis project for several years. The method was designed to support reporting limits in the part per trillion (ppt) range. The laboratory purchased custom glassware that accommodates a 4-liter aliquot of sample for extraction. The extract is then concentrated to a final volume of 1 mL, resulting is a 4000 fold concentration of the PAHs. Analysis of the extract by gas chromatography/mass spectrometry (GCMS), with the instrument in the selected ion monitoring (SIM) mode is then utilized. The methodology has a number of complexities and challenges that can be difficult to overcome.

The Denver laboratory has struggled with reproducibility and sensitivity problems. Original validation studies were performed when all glassware utilized in the extraction of samples was relatively new. As glassware undergoes repeated use and cleaning, the laboratory has struggled to reproduce the sensitivity obtained in the original method detection limit studies. The 4-liter extraction apparatus has a large surface area that develops active sites even with minimal use. At the very low concentrations, this can cause significant losses of some of the PAH compounds. Currently a method detection limit verification spike is required to be analyzed with each sampling event. This low level spike is used by the laboratory to verify that the losses during the extraction process have are not significant enough to compromise the required reporting limits.

The second significant challenge is the control of laboratory background and reagents to levels low enough that these do not contribute significantly to the reported sample results. There are a number of factors that can cause problems. The first is obtaining reagents that are controlled to the required ppt method detection and reporting limits. The reagent water used for method blanks and laboratory

control spikes has to be pre-extracted. Despite the pre-extraction process, there are still frequent low level (less than the reporting limit) detections in the method blanks. The method blank detections are typically the more common PAH compounds, such as naphthalene, but other analytes have also been detected on a less frequent basis. For example, an evaluation of lab historical data indicates that naphthalene is detected in the method blank 90% of the time, while benzo(a)pyrene has been detected in 18% of the method blanks.

Because of the uncertainty in the method detection limit procedure described in 40 CFR, the laboratory likes to have at least a factor of two times between the statistically derived method detection limit and the reporting limit. In this case, the project required reporting limits were written into the quality assurance project plan many years ago. There are a couple of cases where the project reporting limit is very close or equivalent to the method detection limit (for example, perylene). In these cases, the probability of a false negative could be significant.

Given the developments in technology since the implementation of this procedure, there may be other extraction or analytical techniques that will support the project. One example is the use of solid phase extraction. This could simplify a number of the issues involved with the extraction procedures. Other options might include the use of high performance liquid chromatography coupled with mass spectrometry. This technique might not require any extraction process."

Based on the laboratory's assessment of the existing ultra low level method, and their self-assessment of their ability to perform this test, an alternative method should be considered for use on this project. The technological advances in laboratory sciences and updated toxicological information about the health risks of PAH should be used to refine the list of analytes and the method(s) used to measure PAH in St. Louis Park groundwater.

9.0 References

County Well Index, 2012. CWI On-line at http://www.health.state.mn.us/divs/eh/cwi/.

Environmental Security Technology Certification Program, 2009. "Adaptive Long-Term Monitoring at Environmental Restoration Sites: ESTCP Cost and Performance Report". (ESTCP), Project ER-0629, 59 pp, Nov 2009.

Metropolitan Council, 2009. Twin Cities Metropolitan Area Regional Groundwater Flow Model Version 2.00. Draft Technical Report in Support of the Metropolitan Area Master Water Supply Plan. October 2009.

Minnesota Department of Health, 1938. "Report on Investigation of Disposal of Wastes at the Republic Creosoting Company, St. Louis Park, Minnesota". May 1938.

Minnesota Geological Survey, 2000. "Arcview shape files of the bedrock geology and structure of the seven-county Twin Cities metropolitan area, Minnesota". July 21, 2000.

United States Geological Survey:

Hult, M.F., and Schoenberg, M.E., 1984. Preliminary Evaluation of Groundwater Contamination by Coal-Tar Derivatives, St. Louis Park Area, Minnesota. USGS Water Supply Paper 2211.

Norvitch, R.F., Ross, T. G., and Brietkrietz, A., 1973. Water Resources Outlook for the Minneapolis-Saint Paul Metropolitan Area, Minnesota. USGS Open-File Report: 73-203

Lorenz, D.L. and Stark, J.R., 1990. Simulation of Groundwater Flow in the St. Peter Aquifer in an Area Contaminated by Coal-Tar Derivatives, St. Louis Park, Minnesota. Water Resources Investigation Report 90-4150.

Stark, J.R., and Hult, M.F., 1985. Ground-Water Flow in the Prairie du Chien – Jordan Aquifer Related to Contamination by Coal-Tar Derivatives. USGS Water Resources Investigation Report 85-4087.

1

December 2012

Tables

December 2012

i

Table 1 Historical Summary of Other PAH and CPAH Analytical Results 1988 through 2011

SLP11, SLP12, SLP13, and SLP17

All concentrations reported in nanograms per liter (ng/l)

CD-RAP Drinking Water Criterion = 280 ng/l

	SLP11	
Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
6-88	0 3	42
6-89	0	34
3-90	Out o	f Service
3-91	0	43
5-92	0	43
3-93	0	50
3-94	0	66
10-95	3	113
6-96	0	109
10-97	0	78
5-98	0	70
5-99	0	151
9-00	0	22
8-01	0	19
9-02	Out o	f Service
8-03	46	37
2-04	0	26
3-04	0	22
8-04	0	24
9-05	0	27
5-06	3	25
5-07	0	29
8-08	0	28
5-09	0	10
9-10	0	11
9-11	0	92

Sampling Date Total CPAH¹ Total Other PAH² 6-88 0 11 6-89 0 16 3-90 0 109 3-91 0 21 5-92 1 25 3-93 0 9 3-94 0 21 10-95 0 9 6-96 0 3 10-97 0 12 5-98 0 3 9-99 0 10 9-00 0 11 8-01 0 2 9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	SLP12			
6-88 0 11 6-89 0 16 3-90 0 109 3-91 0 21 5-92 1 25 3-93 0 9 3-94 0 21 10-95 0 9 6-96 0 3 10-97 0 12 5-98 0 3 9-99 0 10 9-00 0 11 8-01 0 2 9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	Sampling	Total	Total	
6-89 0 16 3-90 0 109 3-91 0 21 5-92 1 25 3-93 0 9 3-94 0 21 10-95 0 9 6-96 0 3 10-97 0 12 5-98 0 3 9-99 0 10 9-00 0 11 8-01 0 2 9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	Date	CPAH ¹	Other PAH ²	
3-90 0 109 3-91 0 21 5-92 1 25 3-93 0 9 3-94 0 21 10-95 0 9 6-96 0 3 10-97 0 12 5-98 0 3 9-99 0 10 9-00 0 11 8-01 0 2 9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	6-88	0	11	
3-91 0 21 5-92 1 25 3-93 0 9 3-94 0 21 10-95 0 9 6-96 0 3 10-97 0 12 5-98 0 3 9-99 0 10 9-00 0 11 8-01 0 2 9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	6-89	0	16	
5-92 1 25 3-93 0 9 3-94 0 21 10-95 0 9 6-96 0 3 10-97 0 12 5-98 0 3 9-99 0 10 9-00 0 11 8-01 0 2 9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	3-90	0	109	
3-93 0 9 3-94 0 21 10-95 0 9 6-96 0 3 10-97 0 12 5-98 0 3 9-99 0 10 9-00 0 11 8-01 0 2 9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	3-91	0	21	
3-94 0 21 10-95 0 9 6-96 0 3 10-97 0 12 5-98 0 3 9-99 0 10 9-00 0 11 8-01 0 2 9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	5-92	1	25	
10-95 0 9 6-96 0 3 10-97 0 12 5-98 0 3 9-99 0 10 9-00 0 11 8-01 0 2 9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	3-93	0	9	
6-96 0 3 10-97 0 12 5-98 0 3 9-99 0 10 9-00 0 11 8-01 0 2 9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	3-94	0	21	
10-97 0 12 5-98 0 3 9-99 0 10 9-00 0 11 8-01 0 2 9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	10-95	0	9	
5-98 0 3 9-99 0 10 9-00 0 11 8-01 0 2 9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	6-96	0	3	
9-99 0 10 9-00 0 11 8-01 0 2 9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	10-97	0	12	
9-00 0 11 8-01 0 2 9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	5-98	0	3	
8-01 0 2 9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	9-99	0	10	
9-02 3 7 8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	9-00	0	11	
8-03 0 2 8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	8-01	0	2	
8-04 0 20 9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	9-02	3	7	
9-05 0 5 8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	8-03	0	2	
8-06 0 4 5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	8-04	0	20	
5-07 0 4 8-08 0 1 5-09 0 0 9-10 0 2	9-05	0	5	
8-08 0 1 5-09 0 0 9-10 0 2	8-06	0	4	
5-09 0 0 9-10 0 2	5-07	0	4	
9-10 0 2	8-08	0	1	
	5-09	0		
0 11 0 1	9-10	0	2	
9-11 0 4	9-11	0	4	

SLP13				
Sampling	Total	Total		
Date	CPAH ¹	Other PAH ²		
6-88	0	15		
6-89	0	9		
3-90	0	14		
3-91	0	13		
5-92	2	11		
6-93	0	11		
12-94	0	28		
10-95	0	9		
6-96	0	5		
10-97	0	22		
5-98	0	4		
5-99	0	15		
9-00	0	6		
8-01	0	0		
9-02	0	0		
8-03	0	0		
8-04	Out o	f Service		
9-05	0	10		
5-06	3	8		
5-07	0	5		
8-08	0	11		
5-09	0	0		
9-10	0	4		
9-11 Out of Service				

¹ Total Carcinogenic PAHs (as listed in the	CD/RAP (A.1.1)), consist of the sum of:
--	---

benzo(a) anthracene	chrysene	quinoline*
benzo(a)pyrene	dibenzo(a,h)anthracene	benzo(j)fluoranthene**
benzo(b)flouranthene	indeno(1,2,3-cd)pyrene	benzo(g,h,i)perylene

^{*}Quinoline is included in the sum of CPAH if other CPAHs were detected. If no CPAHs are detected, quinoline is included in the Total Other PAH.

**Benzo(j)fluoranthene will coelute with either benzo(b)fluoranthene or benzo(k)fluoranthene. Benzo(j)flouranthene can not be consistently separated by the laboratory. Therefore, if present, it will be reported as benzo(b)- and/or benzo(k)-fluoranthene.

² Total Other PAHs (as listed in the CD/RAP (A.1.2), consists of the sum of:

acenapthene	benzo(e)pyrene	2,3-dihydroindene	1-methylnaphthalene
acenaphthylene	benzo(b)thiophene	fluoranthene	2-methylnaphthalene
acridine	biphenyl	fluorene	naphthalene
anthracene	carbazole	indene	perylene
benzo(k)fluoranthene	dibenzothiophene	indole	phenanthrene
2,3-benzofuran	dibenzofuran		pyrene

³ Result reported as 0 indicates that all parameters were not detected above the laboratory detection limit.

	SLP17	
Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
8-88	0	12
6-89	0	12
6-90	1	18
3-91	0	41
11-92	3	41
6-93	0	12
12-94	4	35
10-95	0	8
6-96	0	5
10-97	62	406
5-98	0	3
5-99	0	40
9-00	Out of Service	

Table 2

Historical Summary of Other PAH and CPAH in Well W105 1988 Through 2010

All concentrations reported in nanograms per liter (ng/l)

W105		
Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
2-88	0 3	9,000
6-88	0	2,400
9-88	0	3,670
12-88	0	2,035
6-89	0	1,400
12-89	0	1,086
5-90	0	2,347
8-90	0	2,600
5-91	9.5	2,164
8-91	0	1,014
2-92	0	2,185
6-92	355	5,057
11-92	0	30,900
1-93	38	1,797
1-93	23	1,966
3-94	60	2,576
5-96	29	2,746
4-98	0	5,493
5-00	89	5,593
6-02	142	5,247
5-04	33	2,363
5-06	200	5,725
5-08	195	14,546
3-09	273	4,107
3-09	166	4,450
6-10	105	13,797
12-10	17	984
12-10	23	894

NOTES:

benzo(a) anthracene indeno(1,2,3-cd)pyrene

benzo(a)pyrene quinoline*

 $\begin{array}{ll} benzo(b) flouranthene & benzo(j) flouranthene \\ chrysene & benzo(g,h,i) perylene \end{array}$

dibenzo(a,h)anthracene

acenapthene biphenyl indene acenaphthylene carbazole indole acridine dibenzofuran 1-methylnaphthalene dibenzothiophene 2-methylnaphthalene anthracene benzo(k)fluoranthene 2,3-dihydroindene naphthalene 2,3-benzofuran fluoranthene perylene phenanthrene benzo(e)pyrene fluorene benzo(b)thiophene pyrene

¹ Total Carcinogenic PAHs (as listed in the CD/RAP (A.1.1), consist of the sum of:

^{*}Quinoline is included in the sum of CPAH if other CPAHs were detected. If no CPAHs are detected, quinoline is included in the Total Other PAH.

^{**}Benzo(j)fluoranthene will coelute with either benzo(b)fluoranthene or benzo(k)fluoranthene. Benzo-(j)flouranthene can not be consistently separated by the laboratory. Therefore if present, it will be reported as benzo(b)- and/or benzo(k)-fluoranthene.

² Total Other PAH cessation criterion is 10,000 ng/l. Total Other PAH consists of the sum of:

³ Result reported as 0 indicates that all parameters were not detected above the laboratory detection limit.

Table 3 Historical Summary of Other PAH and CPAH Analytical Results for Prairie Du Chien-Jordan Aquifer Wells, 1988 through 2011

Results in nanograms per liter

CD-RAP Drinking Water Criteria:

_	-

SLP4				
Sampling	Total	Total		
Date	CPAH ¹	Other PAH ²		
8-88	0 3	244		
10-89	0	232		
3-90	0	210		
6-90	2	239		
11-92	3	309		
3-93	0	237		
6-93	0	259		
3-94	0	552		
10-94	1	571		
9-95	3	561		
12-95	6	229		
6-96	0	431		
9-96	0	526		
4-97	0	596		
9-97	0	533		
4-98	0	440		
9-98	1	361		
11-98	5	91		
5-99	0	485		
8-99	0	328		
5-00	0	465		
9-00	0	376		
5-01	3	397		
5-02	0	281		
5-03	0	249		
5-04	0	248		
9-05	0	107		
5-06	0	185		
5-07	0	99		
4-08	0	107		
5-09	0	107		
6-10	0	156		
9-11	0	118		

SLP5

Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
10-88	0	613
6-89	0	94
6-90	0	49
5-91	1	42
6-92	1	71
8-93	5	77
	SLP8	

Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
8-88	0	18
6-89	0	8
10-89	0	9
3-90	0	15
3-91	0	50
5-92	1	19
11-92	2	9
	LIO	

Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
8-88	0	378
6-89	0	93
9-89	0	370
6-90	0	188
8-90	0	5,300
	Abandone	ed

SLP14

Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
8-88	0	112
6-89	0	134
9-89	0	84
3-90	0	98
8-90	0	145
5-91	1	99
8-91	0	19
5-92	1	90
8-93	0	78
9-94	0	57
6-95	0	89
6-96	0	52
4-97	0	46
5-98	0	55
5-99	0	49
5-00	0	50
5-02	0	25
5-04	Out o	of Service
5-06	82	17
7-06	0	14
8-06	0	19
8-08	0	28
6-10	30	46
7-10	0	10
7-10	0	9

SLP10 Total

Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
8-88	0	8,200
10-89	0	5.120
6-90	0	5,403
8-90	0	7,386
5-91	5	315
6-92	0	3,070
8-93	0	2,091
6-94	0	2,174
6-95	0	1,737
6-96	0	1,742
10-97	0	1,859
5-98	0	1,354
5-99	0	1,452
5-00	0	2,947
5-01	0	1,929
6-02	2	1,453
9-03	8	1,327
5-05	9	2,101
5-06	1	1,524
5-07	3	1,476
5-08	1	1,797
9-10	1	529
9-11	3	537
1		

SLP6

Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
8-88	0	33
10-88 6-89		55 52
9-89	0	36
10-89	0	40
3-90	0	45
6-90	3	80
8-90	0	117
10-90	0	68 123
8-91 5-92	0 1	123
11-92	0	173
3-93	0	212
6-93	0	113
2-94	1	74
6-95	0	88
6-96 8-96	1 0	180 178
10-96	0	189
1-97	0	236
2-97	0	210
3-97	0	277
6-97	0	217
5-98	0	146
8-98	0	173
8-99 5-00	0 0	174 218
8-01	0	158
11-01	0	138
3-02	0	181
5-02	0	189
9-02	0	219
10-02	0	178
3-03 5-03	0 0	124 165
8-03	5	137
11-03	0	238
3-04	0	235
5-04	0	161
8-04	0	244
11-04	0	187
3-05 5-05	0 0	205 197
9-05	3	188
11-05	0	194
3-06	0	127
5-06	0	275
8-06	6	220
11-06	0	151
3-07 5-07	0 0	196 139
8-07	0	220
11-07	Õ	168
3-08	0	173
4-08	0	140
8-08	0	196
11-08	0	213
3-09 5-09	0 0	212 144
8-09	0	221
11-09	Ő	213
3-10	0	198
6-10	0	251
9-10	0	192
12-10	0	183
3-11 6-11	0 1	183 190
9-11	0	188
	-	
		1 -4 5

page 1 of 5

Table 3 Historical Summary of Other PAH and CPAH Analytical Results for Prairie Du Chien-Jordan Aquifer Wells, 1988 through 2011

CD-RAP Drinking Water Criteria:

	SLP7			
Sampling Date	Total CPAH ¹	Total Other PAH ²		
8-88	0	78		
10-88	0	51		
6-89	0	61		
9-89	0	25		
10-89	0	25		
3-90	0	43		
6-90	2	48		
8-90	2	91		
10-90	0	49		
3-91	0	50		
5-91	0	37		
8-91	0	65		
5-92	1	40		
3-93	0	32		
6-94	0	60		
6-95	0	28		
6-96	0	22		
4-97	0	11		
5-98	0	17		

5-99

SLP16		
Sampling Date	Total CPAH ¹	Total Other PAH ²
8-88	0	48
6-89	0	28
9-89	0	24
8-90	8	374
11-90	0	59
5-91	1	32
8-91	0	64
11-92	1	42
8-93	0	11
6-94	0	22
6-95	0	13
6-96	0	8
9-97	0	9
5-98	0	7
5-99	0	0
5-00	0	9
5-02	0	0
5-04	0	8
5-06	0	12
8-08	0	5
6-10	0	1

SLP15		
Sampling Date	Total CPAH ¹	Total Other PAH ²
6-89	0	4,026
11-92	0	3,206
8-93	0	2,091
5-04	0	168
5-09	0	157

E15		
Sampling Date	Total CPAH ¹	Total Other PAH ²
8-88	0	11
6-89	0	16
6-90	0	11
5-91	0	13
5-92	0	23
8-93	0	4
6-94	0	6
6-95	0	8
6-96	0	10
10-96	0	29
6-97	0	3
10-97	0	14
5-98	0	22
8-98	0	7
5-99	0	38
8-99	0	18
5-00	0	26
9-00	0	14
5-01	0	27
9-02	0	5
8-03	0	5
5-04	0	15
9-05	0	26
5-06	0	12
5-07	0	9
5-08	0	5
5-09	0	5
9-10	0	7
6-11	0	8

E13		
Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
8-88	0	4
6-89	0	20
9-89	0	6
6-90	0	13
8-90	2	227
5-91	1	11
8-91	0	12
5-92	0	43
8-93	0	4
6-94	0	3
6-96	0	3
10-96	0	4
4-97	0	38
10-97	0	8
5-98	0	21
8-98	0	36
5-99	0	15
8-99	0	35
5-00	0	39
9-00	0	49
5-01	0	41
5-02	0	80
8-03	7	87
5-04	0	116
9-05	0	208
10-05	0	169
11-05	0	172
5-06	0	112
5-07	9	155
5-08	0	158
5-09	0	169
9-10	0	142
6-11	0	154
9-11	2	155

	E2	
Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
8-88	0	14
6-89	0	21
9-89	0	8
6-90	3	22
8-90	0	14
5-91	4	21
8-91	0	17
5-92	0	19
8-93	0	9
6-94	0	16
12-95	0	10
6-96	0	14
10-96	0	20
4-97	0	45
10-97	0	13
5-98	0	13
8-98	0	196
10-98	0	34
8-99	0	6
5-00	0	8
9-00	0	6
5-01	0	16
9-02	0	0
8-03	0	8
5-04	0	5
6-07	0	72
5-08	0	7
5-09	0	8
9-10	0	4
6-11	0	9

page 2 of 5

Table 3 Historical Summary of Other PAH and CPAH Analytical Results for Prairie Du Chien-Jordan Aquifer Wells, 1988 through 2011

CD-RAP Drinking Water Criteria:

Sum of CPAH......28 ng/l

Sum of OPAH......280 ng/l

	E3	
Sampling Date	Total CPAH ¹	Total Other PAH ²
8-88	0	15
6-89	0	15
6-90	1	17
8-91	0	13
5-92	4	21
8-93	0	5
6-94	0	7
6-95	0	8
6-96	0	3
6-97	0	4
5-98	0	3
5-99	0	0
5-00	0	0
5-01	0	16
5-02	0	0
8-03	0	1
5-04	0	4
9-05	0	5
5-06	0	8
5-09	0	0
9-10	0	2
6-11	0	3

	E7	
Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
6-96	0	3
10-96	0	5
6-97	0	3
10-97	0	2
5-98	0	1
8-98	0	6
5-99	0	5
8-99	0	2
5-00	0	16
9-00	0	9
5-01	0	22
5-02	0	29
8-03	0	22
5-04	Out o	of Service

MTK6		
Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
8-88	0	4
6-89	0	12
6-90	5	22
5-91	0	17
5-92	4	19
8-93	0	7
6-94	0	8
6-95	0	15
6-96	0	4
4-97	0	3
5-98	0	0
5-99	0	2
5-00	0	3
5-02	0	0
5-04	0	8
5-06	0	14
4-08	0	0
9-10	0	3

IIIC.			
	H6		
Sampling	Total	Total	
Date	CPAH ¹	Other PAH ²	
8-88	0	19	
6-89	0	16	
6-90	0	15	
5-91	0	16	
5-92	0	16	
8-93	0	3	
6-94	0	6	
6-95	0	3	
6-96	0	3	
4-97	0	2	
5-98	0	5	
5-99	0	5	
5-00	0	5	
5-02	0	0	
5-04	0	6	
5-06	5	99	
4-08	0	16	
9-10	0	96	

	W48		
Sampling	Total	Total	
Date	CPAH ¹	Other PAH ²	
8-88	0	2,418	
6-89	0	1,636	
9-89	0	1,850	
10-89	0	1,130	
3-90	0	1,690	
6-90	0	1,809	
8-90	22	4,566	
8-93	2	428	
6-94	1	285	
6-95	3	310	
6-96	3	259	
6-97	0	316	
10-97	0	290	
5-98	0	186	
8-98	0	50	
5-99	0	226	
8-99	0	226	
5-00	0	222	
9-00	0	130	
5-01	0	234	
8-01	0	149	
11-01	0	180	
3-02	0	222	
5-02	0	185	
9-02	0	138	
10-02	0	187	
3-03	0	108	
5-03	0	135	
8-03	0	135	
10-03	0	173	
3-04	0	156	
5-04	0	189	
8-04	0	161	
11-04	0	170	

5-05

9-05

11-05

W48		
Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
3-06	0	154
5-06	0	111
8-06	0	169
11-06	0	53
3-07	0	154
5-07	1	114
8-07	0	156
11-07	0	147
3-08	0	132
5-08	0	144
8-08	0	191
11-08	0	176
5-09	0	156
8-09	0	271
11-09	1	225
3-10	0	164
6-10	1	187
9-10	0	188
12-10	0	152
3-11	0	143
6-11	0	151
9-11	8	153
12-11	0	145

9-10	0	96
1/1/2011	NS	NS
	W119	
Sampling	Total CPAH ¹	Total Other PAH ²
Date		
8-88	0	3
6-89	0	18
9-89	0	11
9-01	0	294
Well	Out of Servic	
10-03	1	196
5-04	0	126
8-04	0	226
5-05	0	152
9-05	0	140
5-06	0	210
8-06	0	148
5-07	0	136
8-07	0	138
8-08	0	105
5-09	0	76
8-09	0	124
6-10	0	95
9-10	0	131
6-11	0	61
9-11	3	95

page 3 of 5

144

141

82

156

Table 3 Historical Summary of Other PAH and CPAH Analytical Results for Prairie Du Chien-Jordan Aquifer Wells, 1988 through 2011

CD-RAP Drinking Water Criteria:

W23			
Sampling	Total	Total	
Date	CPAH ¹	Other PAH ²	
9-88	0	111,100	
12-88	0	123,100	
3-89	0	120,200	
6-89	0	117,600	
9-89	0	106,300	
3-90	0	129,100	
8-90	0	114,700	
3-91	0	87,800	
6-91	0	71,800	
9-91	0	91,200	
10-91	0	82,600	
2-92	0	67,600	
9-92	0	78,000	
6-94	0	60,000	
10-94	0	64,000	
5-95	4,000	128,000	
9-95	0	70,000	
4-96	0	48,000	
7-96	0	50,000	
4-97	0	34,000	
10-97	0	47,000	
2-98	0	03	
11-98	0	42,090	
4-99	0	25,970	
8-99	0	14,850	
5-00	0	8,790	
9-00	0	37,980	
12-00	0	25,000	
4-01	472	25,840	
3-02	0	28,700	
6-02	654	29,832	
9-03	514	23,391	
5-04	275	17,796	
5-05	254	25,141	
5-06	111	12,181	
5-07	292	19,603	
5-08	215	18,793	
5-09	365	14,357	
6-10	313	19,088	
12-10	389	14,181	
6-11	144	12,830	

	W401	
Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
8-88	0	12
6-89	0	15
6-90	0	27
5-91	0	28
5-92	0	10
8-93	1	10
6-94	0	8
6-95	0	16
6-96	0	19
10-96	0	29
6-97	0	174
10-97	0	121
5-98	0	66
8-98	0	5
5-99	0	64
8-99	0	23
5-00	0	105
9-00	0	158
5-01	0	295
5-02	0	149
8-03	0	60
5-04	0	195
10-05	0	92
5-06	0	48
5-07	0	41
4-08	0	35
5-09	0	42
6-10	0	9
9-11	0	48

W29			
Sampling	Total	Total	
Date	CPAH ¹	Other PAH ²	
8-88	0	495	
6-89	28	338	
6-90	4	372	
5-91	6	405	
5-92	12	531	
8-93	39	1,887	
6-94	9	749	
6-95	0	1,164	
6-96	0	82	
4-97	0	418	
5-98	0	261	
5-99	0	99	
5-00	3	212	
5-01	3	175	
5-02	0	44	
5-03	0	62	
5-04	11	157	
9-05	0	21	
5-06	9	45	
5-07	1	14	
5-08	0	20	
5-09	1	27	
Well Not Accessible			

W40			
Sampling	Total	Total	
Date	CPAH ¹	Other PAH ²	
8-88	0	1,062	
6-89	0	540	
6-90	16	705	
5-91	5	474	
5-92	2	283	
8-93	5	345	
6-94	0	484	
6-95	0	369	
6-96	0	498	
4-97	0	624	
5-98	0	220	
5-99	0	299	
5-00	2	129	
5-01	7	390	
	Abandone	ed	

	W70			
Sampling	Total	Total		
Date	CPAH ¹	Other PAH ²		
8-88	0	481		
6-89	5	426		
9-89	0	280		
6-90	9	560		
5-91	8	669		
6-92	8	401		
8-93	2	317		
6-94	4	299		
6-95	0	384		
6-96	0	342		
4-97	0	335		
5-98	0	307		
5-99	0	254		
5-00	0	3		
Well Ou	t of Service in	n 2001, 2002		
5-03	0	0		
8-04	Out	of Service		
9-05	7	18		
5-06	0	5		
Abandoned in 2007				

Table 3 Historical Summary of Other PAH and CPAH Analytical Results for Prairie Du Chien-Jordan Aquifer Wells, 1988 through 2011

CD-RAP Drinking Water Criteria:

	W402			
Sampling	Total	Total		
Date	CPAH ¹	Other PAH ²		
9-89	0	151		
6-90	47	720		
8-90	16	133		
5-91	16	408		
8-91	0	18,320		
6-92	12	895		
8-93	7	145		
6-94	5	104		
6-95	0	567		
6-96	13	383		
4-97	0	257		
5-98	0	349		
5-99	1	545		
5-00	0	1,287		
5-01	0	267		
5-02	13	165		
5-03	3	56		
5-04	73	67		
5-05	96	88		
5-06	3	92		
5-07	9	67		
4-08	0	48		
5-09	0	149		
6-10	1	77		
9-11	0	72		

	W403	
Sampling	Total	Total
Date	CPAH ¹	Other PAH ²
8-88	0	57
6-89	40	974
9-89	0	177
8-90	49	1,102
5-91	110	976
8-91	0	11,570
6-92	19	816
8-93	7	516
6-94	7	1,271
6-95	0	543
6-96	3	182
4-97	0	172
5-98	0	11
5-99	0	169
5-00	0	195
5-01	0	458
5-02	3	134
5-03	125	66
5-04	131	88
9-05	4	83
5-06	2	74
5-07	302	304
5-08	1003	796
5-09	450	796
6-10	121	162
9-11	178	91

	W406	
Sampling Date	Total CPAH¹	Total Other PAH ²
6-89	0	36
10-89	0	26
6-90	8	43
8-90	15	119
5-91	1	30
8-91	1	40
5-92	6	53
8-93	0	22
6-94	0	31
6-95	0	34
6-96	0	21
4-97	0	27
5-98	0	15
5-99	0	28
5-00	0	30
5-02	Out of Service	
5-04	0	10
5-06	2	21
8-08	0	11
6-10	0	7

NOTES:

¹ Total Carcinogenic PAHs (as listed in the CD/RAP (A.1.1)), consist of the sum of:

benzo(a)anthracene indeno(1,2,3-cd)pyrene

benzo(a)pyrene quinoline*

benzo(b)flouranthene benzo(j)fluoranthene**
chrysene benzo(g,h,i)perylene

dibenz(a,h)anthracene

 * Quinoline is included in the sum of CPAH if other CPAHs were detected. If no CPAHs are detected, quinoline is

included in the Total Other PAH.

**Benzo(j)fluoranthene will coelute with either benzo(b)fluoranthene or benzo(k)fluoranthene. Benzo(j)fluoranthene can not be consistently separated by the laboratory. Therefore if present, it will be reported as benzo(b)- and/or benzo(k)-fluoranthene.

 2 Total Other PAHs (as listed in the CD/RAP (A.1.2), consists of the sum of:

acenapthenebiphenylindeneacenaphthylenecarbazoleindoleacridinedibenzofuran1-meth

acridine dibenzofuran 1-methylnaphthalene anthracene dibenzofkyfluoranthene 2-methylnaphthalene benzofkyfluoranthene 2,3-dihydroindene naphthalene benzofuran fluoranthene perylene benzofuyrene fluorene penzofuran fluorene pyrene

³ Result reported as 0 indicates that all parameters were not detected above the laboratory detection limit.

All concentrations reported in nanograms per liter (ng/l)

	SLP3	
Sampling	Total	Total
Date	CPAH'	Other PAH ²
7-88	0 3	8
10-88	0	9
6-89	0	10
10-89	0	15
6-90	5	29
8-90	1	18
8-91	1	23
6-92	0	16
11-92	0	13
4-93	0	9
7-93	0	5
5-94	0	8
10-94	0	5
5-95	0	7
10-95	0	16
6-96	0	11
10-96	0	4
4-97	0	6
10-97	0	5
4-98	0	7
9-98	0	247
5-99	0	7
8-99	0	0
5-00	0 2	5
9-00		25
5-01	0	10 2
8-01	0	_
5-02 9-02	0	15 0
5-02	0	0
8-03	0	0
5-04	0	6
8-04	0	8
5-05	0	10
9-05	2	13
5-06	1	5
8-06	0	5
5-07	0	4
8-07	1	5
8-08	0	2
5-09	0	0
8-09	0	Ö
6-10	0	2
9-10	0	3

	P116	
Sampling	Total	Total
Date	CPAH1	Other PAH ²
7-88	8	196
10-88	0	3,770
6-89	1	82
10-89	3	42
8-90	2	20
4-91	0	61
8-91	3	40
6-92	13	118
11-92	10	219
4-93	4	52
7-93	2	38
5-94	1	64
11-94	0	66
5-95	0	50
10-95	0	53
6-96	0	7
10-96	0	43
4-97	0	35
10-97	0	82
4-98	5	148
9-98	0	60
5-99	4	50
8-99	0	55
5-00	2	36

	W14	
Sampling	Total	Total
Date	CPAH1	Other PAH ²
7-88	57	95
10-88	0	439
6-11	75	98

	W24	
Sampling	Total	Total
Date	CPAH1	Other PAH [∠]
7-88	0	3,309
10-88	0	3,622
4-91	0	4,023
8-91	0	4,160
6-92	0	3,380
11-92	0	3,650
4-93	0	2,950
7-93	0	3,294
5-94	0	2,669
11-94	0	4,029
5-95	0	3,190
10-95	0	1,550
5-96	0	974
10-96	0	1,603
4-97	0	1,513
10-97	0	1,340
4-98	0	689
9-98	0	1,120
4-99	0	2,085
9-99	0	3,590
5-00	0	940
5-01	0	152
9-01	0	619
6-02	0	439
9-02	0	307
6-03	0	335
9-03	0	246
5-04	0	212
8-04	0	188
5-05	0	102
9-05	0	130
5-06	11	72
8-06	0	93
5-07	0	65
5-08	0	24
8-08	0	53
5-09	0	26
8-09	0	51
6-10	0	82
9-10	0	38
6-11	0	40

NOTES:

¹ Total Carcinogenic PAHs (as listed in the CD/RAP (A.1.1)), consist of the sum of:

benzo(a) anthracene indeno(1,2,3-cd)pyrene benzo(a)pyrene quinoline* benzo(b)flouranthene benzo(j)flouranthene benzo(j)flouranthene** benzo(g,h,i)perylene dibenz(a,h)anthracene

*Quinoline is included in the sum of CPAH if other CPAHs were detected.

If no CPAHs are detected, quinoline is included with the Total Other PAH.

**Benzo(j)fluoranthene will coelute with either benzo(b)fluoranthene
or benzo(k)fluoranthene. Benzo(j)fluoranthene can not be consistently
separated by the laboratory. Therefore if present, it will be reported as

 $benzo(b)\mbox{- and/or benzo(k)-fluoranthene.}$ 2 Total Other PAHs (as listed in the CD/RAP (A.1.2), consists of the sum of:

acenapthene 2,3-dihydroindene acenaphthylene fluoranthene acridine fluorene anthracene indene benzo(k)fluoranthene indole 2,3-benzofuran 1-methylnaphthalene benzo(e)pyrene 2-methylnaphthalene benzo(b)thiophene naphthalene biphenyl perylene phenanthrene carbazole dibenzofuran

³ Result reported as 0 indicates that all parameters were not detected above the laboratory detection limit.

All concentrations reported in nanograms per liter (ng/l)

\	W122	
Sampling	Total	Total
Date	CPAH1	Other PAH ²
7-88	21	142
10-88	0	2,246
6-89	20	965
10-89	15	114
4-91	36	757
8-91	10	853
6-92	43	568
11-92	7	179
4-93	32	308
7-93	24	330
5-94	23	583
10-94	10	374
5-95	0	281
10-95	11	220
6-96	0	144
10-96	0	235
4-97	0	256
10-97	0	243
4-98	7	370
9-98	0	99
5-99	0	71
8-99	7	46
5-00	39	65
9-00	6	142
5-01	0	92
8-01	0	24
5-02	0	92
9-02	5	73
5-03	29	73
8-03	6	134
5-04	100	69
8-04	1	79
5-05	78	88
9-05	6	78
5-06	8 1	63
8-06	-	88
5-07	13	79
8-07	9	54
5-08	11	104
8-08	0	95
5-09	0 2	329
8-09		194
6-10 9-10	4 5	282 243
	5 6	
6-11	ъ	22

	W129	
Sampling	Total	Total
Date	CPAH'	Other PAH ²
7-88	0	88
10-88	0	290
6-89	0	27
10-89	0	43
6-90	0	143
8-90	0	96
4-91	27	159
8-91	0	430
6-92	47	247
11-92	5	296
4-93	15	121
7-93	2	53
5-94	0	171
11-94	2	110
5-95	12	94
10-95	0	55
6-96	0	53
10-96	0	75
4-97	0	104
10-97	0	181
4-98	9	88
9-98	0	8
5-99	1	79
8-99	0	80
5-00	26	223
9-00	8	150
6-11	22	535

	W33R	
Sampling Date	Total CPAH¹	Total Other PAH [∠]
5-07/8-07	14	778
5-08	2	497
8-08	15	182
5-09	45	883
8-09	11	109
6-10	14	122
9-10	31	96
6-11	0	27

Sampling Date Total CPAH¹ Total Other PAH² 7-88 0 52,370 10-88 0 29,830 6-89 0 37,870 10-89 0 21,099 6-90 0 19,448 8-90 0 14,030 4-91 5 2,587 8-91 0 4,610 6-92 0 2,453 11-92 0 1,920 4-93 0 1,134 7-93 0 836 5-94 5 665 10-94 0 434 5-95 0 165 10-95 0 157 5-96 0 142 10-97 0 241 10-97 0 88 9-98 0 299 4-99 7 633		11/400	
Date CPAH¹ Other PAH² 7-88 0 52,370 10-88 0 29,830 6-89 0 37,870 10-89 0 21,099 6-90 0 19,448 8-90 0 14,030 4-91 5 2,587 8-91 0 4,610 6-92 0 2,453 11-92 0 1,134 7-93 0 836 5-94 5 665 10-95 0 165 10-95 0 157 5-96 0 142 10-97 0 285 4-97 0 241 10-97 0 88 9-98 0 299 4-99 7 633		W133	
7-88 0 52,370 10-88 0 29,830 6-89 0 37,870 10-89 0 21,099 6-90 0 19,448 8-90 0 14,030 4-91 5 2,587 8-91 0 4,610 6-92 0 2,453 11-92 0 1,920 4-93 0 1,134 7-93 0 836 5-94 5 665 10-94 0 434 5-95 0 165 10-95 0 157 5-96 0 142 10-96 0 285 4-97 0 241 10-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			
10-88 0 29,830 6-89 0 37,870 10-89 0 21,099 6-90 0 19,448 8-90 0 14,030 4-91 5 2,587 8-91 0 4,610 6-92 0 2,453 11-92 0 1,920 4-93 0 836 5-94 5 665 10-94 0 434 5-95 0 165 10-95 0 157 5-96 0 142 10-97 0 285 4-97 0 241 10-97 0 88 9-98 0 299 4-99 7 633			
6-89 0 37,870 10-89 0 21,099 6-90 0 19,448 8-90 0 14,030 4-91 5 2,587 8-91 0 4,610 6-92 0 2,453 11-92 0 1,920 4-93 0 1,134 7-93 0 836 5-94 5 665 10-94 0 434 5-95 0 165 10-95 0 157 5-96 0 142 10-96 0 285 4-97 0 241 10-97 0 108 8-998 0 299 4-99 7 633			- ,
10-89 0 21,099 6-90 0 19,448 8-90 0 14,030 4-91 5 2,587 8-91 0 4,610 6-92 0 2,453 11-92 0 1,920 4-93 0 1,134 7-93 0 836 5-94 5 665 10-94 0 434 5-95 0 165 10-95 0 157 5-96 0 142 10-96 0 285 4-97 0 241 10-97 0 108 8-98 0 299 4-99 7 633			
6-90 0 19,448 8-90 0 14,030 4-91 5 2,587 8-91 0 4,610 6-92 0 2,453 11-92 0 1,920 4-93 0 1,134 7-93 0 836 5-94 5 665 10-94 0 434 5-95 0 165 10-95 0 157 5-96 0 142 10-96 0 285 4-97 0 241 10-97 0 108 8-98 0 88 9-98 0 299 4-99 7 633			
8-90 0 14,030 4-91 5 2,587 8-91 0 4,610 6-92 0 2,453 11-92 0 1,920 4-93 0 1,134 7-93 0 836 5-94 5 665 10-94 0 434 5-95 0 165 10-95 0 157 5-96 0 142 10-96 0 285 4-97 0 241 10-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			
4-91 5 2,587 8-91 0 4,610 6-92 0 2,453 11-92 0 1,920 4-93 0 1,134 7-93 0 836 5-94 5 665 10-94 0 434 5-95 0 165 10-95 0 157 5-96 0 142 10-96 0 285 4-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			
8-91 0 4,610 6-92 0 2,453 11-92 0 1,920 4-93 0 1,134 7-93 0 836 5-94 5 665 10-94 0 434 5-95 0 165 10-95 0 157 5-96 0 142 10-96 0 285 4-97 0 241 10-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			
6-92 0 2,453 11-92 0 1,920 4-93 0 1,134 7-93 0 836 5-94 5 665 10-94 0 434 5-95 0 165 10-95 0 157 5-96 0 142 10-96 0 285 4-97 0 241 10-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			
11-92 0 1,920 4-93 0 1,134 7-93 0 836 5-94 5 665 10-94 0 434 5-95 0 165 10-95 0 157 5-96 0 142 10-96 0 285 4-97 0 241 10-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			
4-93 0 1,134 7-93 0 836 5-94 5 665 10-94 0 434 5-95 0 165 10-95 0 157 5-96 0 142 10-96 0 285 4-97 0 241 10-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			
7-93 0 836 5-94 5 665 10-94 0 434 5-95 0 165 10-95 0 157 5-96 0 142 10-96 0 285 4-97 0 241 10-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			
5-94 5 665 10-94 0 434 5-95 0 165 10-95 0 157 5-96 0 142 10-96 0 285 4-97 0 241 10-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			
10-94 0 434 5-95 0 165 10-95 0 157 5-96 0 142 10-96 0 285 4-97 0 241 10-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			
5-95 0 165 10-95 0 157 5-96 0 142 10-96 0 285 4-97 0 241 10-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			
10-95 0 157 5-96 0 142 10-96 0 285 4-97 0 241 10-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			-
5-96 0 142 10-96 0 285 4-97 0 241 10-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			
10-96 0 285 4-97 0 241 10-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			
4-97 0 241 10-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			
10-97 0 108 4-98 0 88 9-98 0 299 4-99 7 633			
4-98 0 88 9-98 0 299 4-99 7 633			
9-98 0 299 4-99 7 633			
4-99 7 633			
	9-99	0	190
5-00 0 167			
9-00 0 327			
5-01 0 156			
8-01 0 40			
5-02 0 904			-
9-02 0 338			
5-03 6 114			
8-03 11 411			
5-04 0 905			
8-04 84 186			
5-05 50 1,617			
9-05 9 434			
5-06 15 1,988			
8-06 0 463			
5-07 0 552			
8-07 14 730			
5-08 23 182			
8-08 0 567			
5-09 0 856			
8-09 2 343			
6-10 6 514			
9-10 27 217			

All concentrations reported in nanograms per liter (ng/l)

	W408	
Sampling	Total	Total
Date	CPAH'	Other PAH ²
7-88	2	151
10-88	0	34
6-89	5	145
10-89	0	110
6-90	0	24
8-90	28	130
4-91	13	343
8-91	25	1,163
6-92	32	283
11-92	2	172
4-93	4	150
7-93	6	217
5-94	5	70
11-94	0	170
5-95	9	143
10-95	15	135
6-96	0	66
10-96	0	103
4-97	0	169
10-97	0	166
4-98	1	96
9-98	0	62
5-99	0	64
8-99	2	51
5-00	89	103
9-00	0	53
6-11	2	41

	W414	
Sampling	Total	Total
Date	CPAH'	Other PAH ²
6-11	4	47

•		
	W409	
Sampling	Total	Total
Date	CPAH'	Other PAH ²
7-88	159	2,198
10-88	0	890
6-89	53	571
10-89	0	830
6-90	0	141
8-90	43	200
4-91	0	360
8-91	0	3,833
6-92	0	49,660
11-92	0	49,399
4-93	0	50,060
7-93	0	42,440
5-95	0	173,000
10-95	0	167,000
4-96	0	805,420
10-96	0	312,500
5-97	0	157,000
9-97	0	64,000
5-98	0	159,200
9-98	0	107,700
4-99	0	446,860
8-99	0	342,000
5-00	0	1,196,900
9-00	620	468,710
5-01	0	269,800
8-01	0	228,300
5-02	0	324,300
9-02	0	135,200
5-03	0	170,600
8-03	0	213,700
5-04	0	152,200
8-04 5-05	0	125,800
9-05	0	148,300
5-06	0	91,300 48,480
8-06	0	33,000
5-06	0	28,800
8-07	0	18,170
5-08	0	28,200
8-08	0	35,900
5-09	0	1,600
8-09	0	29,000
6-10	0	18,170
9-10	0	8,623
6-11	0	15,289

	W410	
Sampling	Total	Total
Date	CPAH'	Other PAH
7-88	0	1,288
	0	
10-88	5	1,435 424
6-89 10-89	0	357
4-91	0	85
8-91	0	5,330
2-92	0	14,070
6-92	0	12,850
11-92	0	16,470
4-93	0	17,600
7-93	0	16,609
5-94	0	14,505
10-94	0	20,880
5-95	0	21,640
10-95	0	13,940
5-96	0	15,970
10-96	0	14,170
4-97	0	14,690
10-97	0	10,150
4-98	0	8,620
5-98	0	1,900
9-98	0	9,690
11-98	0	5,942
3-99	0	8,780
4-99	0	21,606
9-99	0	8,780
11-99	0	3,800
2-00	0	4,750
5-00	Ō	6,502
9-00	0	6,269
12-00	0	1,500
3-01	0	2,940
5-01	0	6,217
9-01	Ö	2,854
3-02	0	2,090
6-02	0	2,142
9-02	0	3,327
6-03	0	4,593
9-03	0	4,332
5-04	0	4,489
8-04	0	7,086
5-05	0	7,701
9-05	0	10,553
5-06	0	9,545
8-06	0	8,359
5-07	0	17,690
5-09	0	32,718
8-09	0	61,812
6-10	0	53,603
9-10	0	62,470
6-11	0	82,505

All concentrations reported in nanograms per liter (ng/l)

	W411	
Sampling	Total	Total
Date	CPAH1	Other PAH ²
7-88	0	1,274
10-88	0	1,161
6-89	8	200
10-89	0	460
6-90	15	451
8-90	0	336
4-91	12	384
8-91	0	251
6-92	24	313
11-92	1	181
4-93	7	189
7-93	5	113
5-94	3	120
11-94	6	219
5-95	6	235
10-95	1	183
6-96	0	79
10-96	0	253
4-97	0	82
10-97	3	253
4-98	1	120
9-98	61	424
5-99	0	99
8-99	0	79
5-00	0	56
9-00	17	138
5-01	0	124
8-01	0	46
5-02	0	34
9-02	0	16
5-03	38	113
8-03	0	57
5-04	97	107
8-04	0	90
5-05	43	75
9-05	3	76
5-06	1	56
8-06	0	68
5-07	4	84
8-07	1	93
5-08	0	84
8-08	0	95
5-09	0	114
8-09	0	22
6-10	2	183
9-10	0	197
6-11	0	26

	W412	
Sampling	Total	Total
Date	CPAH'	Other PAH ²
7-88	8	1,309
10-88	0	209
6-89	18	211
10-89	0	132
8-90	1	484
4-91	48	1,470
8-91	0	5,283
6-92	12	1,319
11-92	0	3,796
4-93	154	842
7-93	16	777
5-94	25	291
10-94	10	538
5-95	18	369
10-95	0	402
5-96	0	139
10-96	0	1,620
4-97	0	806
10-97	0	614
4-98	30	260
9-98	60	557
4-99	20	267
9-99	0	764
5-00	250	105
9-00	1	164
5-01 8-01	4 0	363 1125
5-02	10	243
9-02	3	135
5-02	12	82
8-03	15	130
5-04	84	129
8-04	11	236
5-05	85	132
9-05	3	115
5-06	21	118
8-06	9	246
5-07	3	54
8-07	2	255
5-08	15	297
8-08	0	710
5-09	0	530
8-09	0	450
6-10	0	207
9-10	0	10
6-11	21	72

Table 5 Historical Summary of Other PAH, CPAH, and Phenolic Analytical Results 1988 Through 2011

Platteville Aquifer Wells

PAH and Phenolic concentrations in micrograms per liter (ug/l)

W18				
Sampling	Total	Total	Total	
Date	CPAH ¹	Other PAH ²	Phenolics	
8-88	0 3	0	20	
10-88	0	361	20	
6-89	0	39	44	
2-92	0	10	8	
5-96	0	2	NA	
9-96	0	2	NA	
4-97	0	1	NA	
9-97	0	1	NA	
5-98	0	1	NA	
9-98	0	0	NA	
5-99	0	1	NA	
9-99	0	1	NA	
5-00	0	1	NA	
9-00	0	1	NA	
0-11	Λ	0	NΙΛ	

W22				
Sampling	Total	Total	Total	
Date	CPAH ¹	Other PAH ²	Phenolics	
5-90	0	0	0	
2-92	0	1	0	
3-92	0	5	NA	
5-96	0	0	NA	
9-96	0	0	NA	
4-97	0	2	NA	
9-97	0	2	NA	
4-98	0	1	NA	
9-98	0	8	NA	
4-99	0	22	NA	
9-99	0	24	NA	
5-00	0	3	NA	
9-00	0	42	NA	
6-11	0	0	NA	

W101					
Sampling	Total	Total	Total		
Date	CPAH ¹	Other PAH ²	Phenolics		
8-88	0	4	7		
10-88	0	23	0		
6-89	0	48	20		
5-90	0	22	0		
2-92	0	18	6		
5-94	0	11	0		
5-96	0	5	NA		
10-96	0	32	NA		
4-97	0	31	NA		
9-97	0	15	NA		
4-98	0	17	NA		
9-98	0	125	NA		
4-99	0	32	NA		
9-99	0	24	NA		
5-00	0	41	NA		
9-00	0	32	NA		
4-01	0	18	NA		
9-014	0	12	NA		
5-02	0	17	NA		
9-02	0	6	NA		
5-03	0	14	NA		
8-03	0	3	NA		
5-04	0	19	NA		
8-04	0	3	NA		
5-05	0	3	NA		
9-05	0	2	NA		
5-06	0	2	NA		
8-06	0	3	NA		
5-07	0	8	NA		
8-07	0	0	NA		
5-08	0	0	NA		
8-08	0	0	NA		
5-09	0	0	NA		
8-09	0	10	NA		
6-10	0	0	NA		
9-10	0	0	NA		
9-11	0	0	NA		

	W20				
Sampling	Total	Total	Total		
Date	CPAH ¹	Other PAH ²	Phenolics		
8-88	0	0	28		
10-88	0	3	16		
6-89	0	6	34		
5-90	0	7	9		
5-94	0	1	0		
5-96	0	1	NA		
9-96	0	1	NA		
4-97	0	2	NA		
10-97	0	2	NA		
5-98	0	1	NA		
9-98	0	0	NA		
5-99	0	1	NA		
9-99	0	1	NA		
5-00	0	1	NA		
9-00	0	1	NA		
5-01	0	0	NA		
8-01 ⁴	0	0	NA		
5-02	0	0	NA		
9-02	0	0	NA		
5-03	0	6	NA		
8-03	0	5	NA		
5-04	0	2	NA		
8-04	0	0	NA		
5-05	0	0	NA		
9-05	0	0	NA		
5-06	0	0	NA		
8-06	0	0	NA		
5-07	0	0	NA		
8-07	0	4	NA		
5-08	0	0	NA		
8-08	0	0	NA		
5-09	0	0	NA		
8-09	0	0	NA		
6-10	0	0	NA		
9-10	0	0	NA		
6-11	0	0	NA		

W27				
Sampling	Total	Total	Total	
Date	CPAH ¹	Other PAH ²	Phenolics	
10-88	0	1,882	NA	
6-89	0	1,345	NA	
5-96	0	1	NA	
10-96	0	9	NA	
4-97	0	281	NA	
9-97	0	416	NA	
4-98	0	184	NA	
9-98	0	422	NA	
4-99	0	312	NA	
8-99	0	158	NA	
5-00	0	415	NA	
9-00	0	243	NA	
5-01	0	199	NA	
8-01 ⁴	0	99	NA	
5-02	0	123	NA	
9-02	0	193	NA	
5-03	0	89	NA	
8-03	0	85	NA	
5-04	0	196	NA	
8-04	0	116	NA	
5-05	0	143	NA	
9-05	0	106	NA	
5-06	0	133	NA	
8-06	0	118	NA	
5-07	0	77	NA	
8-07	0	97	NA	
5-08	0	48	NA	
8-08	0	109	NA	
5-09	0	76	NA	
8-09	0	121	NA	
6-10	0	54	NA	
9-10	1	69	NA	
6-11	0	79	NA	

	W121				
Samp Date				;	
8-8	3 0	0	73		
10-8	8 0	0	35		
6-89	9 0	0	35		
5-90	0 0	0	0		
5-9	4 0	0	0		
5-96	6 0	0	NA		
10-9	6 0	0	NA		
4-9	7 0	0	NA		
10-9	7 0	0	NA		
5-98	3 0	0	NA		
9-98	3 0	0	NA		
5-99	9 0	0	NA		
9-99	9 0	0	NA		
5-00	0 0	0	NA		
9-00	0 0	0	NA		
9-1	1 0	0	NA		

Table 5 Historical Summary of Other PAH, CPAH, and Phenolic Analytical Results 1988 Through 2011

Platteville Aquifer Wells

PAH and Phenolic concentrations in micrograms per liter (ug/l)

	W120				
Sampling	Total	Total	Total		
Date	CPAH ¹	Other PAH ²	Phenolics		
8-88	0	35	44		
10-88	0	41	57		
6-89	0	76	48		
5-96	0	2	NA		
10-96	0	11	NA		
4-97	0	12	NA		
9-97	0	6	NA		
4-98	0	2	NA		
9-98	0	4	NA		
4-99	0	3	NA		
9-99	0	2	NA		
5-00	0	2	NA		
9-00	0	2	NA		
5-07	0	0	NA		
8-07	0	0	NA		
5-08	0	0	NA		
8-08	0	0	NA		
5-09	0	0	NA		
8-09	0	0	NA		
6-10	0	0	NA		
9-10	0	0	NA		

W130				
Sampling	Total	Total	Total	
Date	CPAH ¹	Other PAH ²	Phenolics	
8-88	0	0	0	
10-88	0	0	0	
6-89	0	0	0	
5-90	0	0	0	
5-96	0	0	NA	
10-96	0	0	NA	
4-97	0	0	NA	
10-97	0	0	NA	
5-98	0	0	NA	
9-98	0	0	NA	
5-99	0	0	NA	
9-99	0	0	NA	
5-00	0	0	NA	
9-00	0	0	NA	
6-11	0	0	NA	

W424				
Sampling	Total	Total	Total	
Date	CPAH ¹	Other PAH ²	Phenolics	
8-88	0	0	10	
10-88	0	0.	0	
6-89	0	1	17	
5-90	0	0	0	
2-92	0	5	0	
3-92	0	11	0	
5-94	0	0	0	
5-96	0	0	NA	
10-96	0	0	NA	
4-97	0	0	NA	
9-97	0	0	NA	
5-98	0	0	NA	
9-98	0	0	NA	
5-99	0	0	NA	
9-99	0	0	NA	
5-00	0	0	NA	
9-00	0	0	NA	
6-11	0	0	NA	

MAGE

W131				
Sampling	Total	Total	Total	
Date	CPAH ¹	Other PAH ²	Phenolics	
8-88	0	0	0	
10-88	0	0	13	
6-89	0	0	0	
2-92	0	13	0	
5-94	0	0	0	
5-96	0	0	NA	
10-96	0	0	NA	
4-97	0	0	NA	
10-97	0	0	NA	
5-98	0	0	NA	
9-98	0	0	NA	
5-99	0	0	NA	
9-99	0	0	NA	
5-00	0	0	NA	
5-01	0	0	NA	
8-01 ⁴	0	0	NA	
5-02	0	0	NA	
9-02	0	0	NA	
5-03	0	0	NA	
8-03	0	0	NA	
5-04	0	2	NA	
8-04	0	3	NA	
5-05	0	0	NA	
9-05	0	0	NA	
5-06	0	0	NA	
8-06	0	2	NA	
5-07	0	0	NA	
8-07	0	0	NA	
5-08	0	0	NA	
8-08	0	0	NA	
5-09	0	0	NA	
8-09	0	0	NA	
6-10	0	0	NA	
9-10	0	0	NA	
9-11	0	0	NA	

1				
W143				
Sampling	Total	Total	Total	
Date	CPAH ¹	Other PAH ²	Phenolics	
8-88	0	0	0	
10-88	0	0	0	
6-89	0	1	33	
5-96	0	1	NA	
10-96	0	1	NA	
4-97	0	9	NA	
9-97	0	1	NA	
4-98	0	4	NA	
9-98	0	10	NA	
4-99	0	15	NA	
9-99	0	4	NA	
5-00	0	0	NA	
5-01	0	5	NA	
9-01 ⁴	0	3	NA	
5-02	0	10	NA	
9-02	0	0	NA	
5-03	0	0	NA	
8-03	0	0	NA	
5-04	0	0	NA	
8-04	0	3	NA	
5-05	0	6	NA	
9-05	0	2	NA	
5-06	0	14	NA	
8-06	0	3	NA	
5-07	0	3	NA	
8-07	0	0	NA	
5-08	0	0	NA	
8-08	0	2	NA	
5-09	0	0	NA	
8-09	0	8	NA	
6-10	0	0	NA	
9-10	0	0	NA	
0.44	_	_		

W426					
Sampling	Total	Total	Total		
Date	CPAH ¹	Other PAH ²	Phenolics		
8-88	1	905	25		
10-88	0	639	35		
6-89	0	498	80		
2-92	0	82	15		
3-92	0	47	NA		
5-96	0	55	NA		
4-97	0	76	NA		
9-97	0	64	NA		
4-98	0	108	NA		
9-98	0	1,508	NA		
4-99	0	642	NA		
8-99	0	258	NA		
5-00	0	112	NA		
9-00	0	160	NA		
5-01	0	131	NA		
8-01 ⁴	0	32	NA		
5-02	0	564	NA		
9-02	0	271	NA		
5-03	0	574	NA		
8-03	0	289	NA		
5-04	0	636	NA		
8-04	0	218	NA		
5-05	0	601	NA		
9-05	0	415	NA		
5-06	0	259	NA		
8-06	0	262	NA		
5-07	0	301	NA		
8-07	0	144	NA		
5-08	0	147	NA		
8-08	0	267	NA		
5-09	0	141	NA		
8-09	0	116	NA		
6-10	0	92	NA		
9-10	0	37	NA		
6-11	0	121	NA		

Table 5 Historical Summary of Other PAH, CPAH, and Phenolic Analytical Results 1988 Through 2011

Platteville Aquifer Wells

PAH and Phenolic concentrations in micrograms per liter (ug/l)

W421				
Sampling	Total CPAH ¹	Total Other PAH ²	Total	
Date 1st Quarter	0	566	Phenolics 33	
2nd Quarter	0	821	0	
8-88	0	764	30	
10-88	0	1,107	35	
3-89 6-89	0 0	878	29 26	
9-89	0	1,000 1,000	33	
12-89	0	730	27	
3-90	0	1,420	33	
5-90	0	715	29	
8-90 12-90	0 0	1,410	36	
3-91	0	1,145 1,449	29 30	
6-91	10	1,389	31	
9-91	0	1,226	27	
10-91	0	1,285	30	
2-92	0 0	988	31	
6-92 9-92	0	1,163 1,547	26 28	
10-92	0	1,299	45	
3-93	0	1,332	15	
4-93	0	1,184	21	
8-93	0	1,025	32	
11-93 2-94	0	1,017 1,045	29	
2-94 6-94	0 0	939	14 17	
8-94	0	788	31	
10-94	0	966	24	
3-95	0	949	31	
5-95	0	911	19	
9-95 10-95	0 0	966 764	29 20	
2-96	0	618	28	
4-96	Ō	630	123	
7-96	0	884	24	
10-96	0	843	24	
2-97 5-97	0 0	709 741	26 27	
9-97	0	699	25	
1-98	Ö	787	26	
2-98	0	915	20	
5-98	0	684	21	
9-98 11-98	0 0	306	5 26	
3-99	0	518 393	21	
4-99	0	611	21	
8-99	0	389	25	
11-99	0	479	12	
2-00 5-00	0 0	462 626	23 24	
9-00	44	1,022	19	
12-00	0	376	18	
3-01	8	341	21	
5-01	7	717	29	
8-01	31 36	415	23	
10-01 3-02	36 6	266 557	27 7	
5-02	3	410	NA	
9-02	0	551	NA	
10-02	5	530	NA	
3-03	430	1,302	NA	
5-03 8-03	310 5	2,112 545	NA NA	
11-03	715	4,396	NA	
3-04	23	675	NA	
4-04	0	619	NA	
8-04	13	780	NA	
11-04	18	995	NA NA	
3-05	8	532	NA	

W421				
Sampling	Total	Total	Total	
Date	CPAH ¹	Other PAH ²	Phenolics	
5-05	0	518	NA	
9-05	0	533	NA	
11-05	6	407	NA	
3-06	0	645	NA	
5-06	0	539	NA	
8-06	2	577	NA	
11-06	2	596	NA	
3-07	36	655	NA	
5-07	9	608	NA	
8-07	22	797	NA	
11-07	7	682	NA	
3-08	106	868	NA	
4-08	38	648	NA	
5-09	14	525	NA	
8-09	140	1,307	NA	
11-09	171	1,731	NA	
3-10	360	3,048	NA	
6-10	111	818	NA	
9-10	260	1,635	NA	
12-10	74	993	NA	
3-11	65	737	NA	
6-11	6	606	NA	
9-11	181	2,131	NA	
12-11	392	2,822	NA	

W434				
Sampling	Total	Total	Total	
Date	CPAH ¹	Other PAH ²	Phenolics	
2-92	0	4	9	
10-96	0	4	NA	
4-97	0	7	NA	
9-97 ⁴	0	5	8	
10-97	0	3	NA	
1-98	0	4	0	
2-98	0	3	5	
5-98	0	3	5	
9-98	0	73	0	
11-98	0	12	0	
3-99	0	14	0	
4-99	0	1	0	
8-99	0	1	6	
11-99	0	1	0	
2-00	0	2	0	
5-00	0	5	3	
9-00	0.3	4	0	
12-00	0	1	0	
3-01	0	3	5	
5-01	0	6	6	
9-01	0	4	NA	
10-01	0	4	5	
3-02	0	5	25	
5-02	0	5	NA	
9-02	0	5 4	NA	
5-03	0	•	NA	
8-03	0	3	NA	
5-04	0	6	NA	
8-04 5-05	0 0	3 3	NA NA	
		3	NA NA	
9-05 5-06	0	3	NA NA	
8-06	0	3	NA NA	
5-06	0	2	NA NA	
8-07	0	2	NA	
5-08	0	2	NA NA	
8-08	0	2	NA	
5-09	0	0	NA	
6-10	0	2	NA	
9-10	0	1	NA	
9-11	0	1	NA	
<u> </u>		•		

Table 5 Historical Summary of Other PAH, CPAH, and Phenolic Analytical Results 1988 Through 2011

Platteville Aquifer Wells

PAH and Phenolic concentrations in micrograms per liter (ug/l)

W428				
Sampling	Total	Total	Total	
Date	CPAH ¹	Other PAH ²	Phenolics	
8-88	0	0	0	
10-88	0	1	8	
6-89	0	1	16	
5-90	0	0	0	
2-92	0	2	6	
3-92	0	9	NA	
5-94	0	0	0	
5-96	0	0	NA	
10-96	0	0	NA	
4-97	0	0	NA	
5-98	0	0	NA	
9-98	0	1	NA	
5-99	0	1	NA	
9-99	0	0	NA	
5-00	0	2	NA	
9-00	0	1	NA	
5-01	0	2	NA	
8-01 ⁴	0	0	NA	
5-02	0	0	NA	
9-02	0	0	NA	
5-03	0	0	NA	
8-03	0	0	NA	
5-04	0	0	NA	
8-04	0	0	NA	
5-05	0	0	NA	
9-05	0	0	NA	
5-06	0	0	NA	
8-06	0	0	NA	
5-07	0	0	NA	
8-07	0	0	NA	
5-08	0	0	NA	
8-08	0	0	NA	
5-09	0	0	NA	
8-09	0	0	NA	
6-10	0	0	NA	
9-10	0	0	NA	
9-11	0	0	NA	

W437					
Sampling	Total	Total	Total		
Date	CPAH ¹	Other PAH ²	Phenolics		
2-92	0	3,096	20		
3-92	0	489	NA		
5-01	0	6,305	NA		
8-01 ⁴	0	5,342	NA		
5-02	0	5,438	NA		
9-02	0	5,292	NA		
5-03	0	1,116	NA		
8-03	0	5,977	NA		
5-04	0	6,265	NA		
8-04	0	4,553	NA		
5-05	0	4,749	NA		
9-05	0	5,802	NA		
5-06	0	4,241	NA		
8-06	0	5,443	NA		
5-07	0	3,699	NA		
8-07	0	3,703	NA		
5-08	0	2,667	NA		
8-08	0	3,520	NA		
5-09	0	2,507	NA		
8-09	0	2,868	NA		
6-10	0	1,248	NA		
9-10	0	1,515	NA		
6-11	0	907	NA		

W438				
Sampling	Total	Total	Total	
Date	CPAH ¹	Other PAH ²	Phenolics	
2-92	0	20	5	
3-92	0	0	NA	
5-01	1	1	NA	
9-01 ⁴	1	1	NA	
5-02	0	5	NA	
9-02	0	0	NA	
5-03	0	0	NA	
8-03	0	0	NA	
5-04	0	0	NA	
8-04	0	0	NA	
5-05	0	0	NA	
9-05	0	0	NA	
5-06	0	0	NA	
8-06	0	0	NA	
5-07	0	0	NA	
8-07	0	0	NA	
5-08	0	0	NA	
8-08	0	0	NA	
5-09	0	0	NA	
8-09	0	0	NA	
6-10	0	0	NA	
9-10	0	0	NA	
6-11	0	0	NA	

NOTES

Total Carcinogenic PAHs (as listed in the CD/RAP (A.1.1)), consist of the sum of:

benzo(a) anthracene indeno(1,2,3-cd)pyrene benzo(a)pyrene quinolline* benzo(b)flouranthene benzo(j)flouranthene** benzo(g,h,i)perylene dibenz(a,h)anthracene

*Quinoline is included in the sum of CPAH if other CPAHs were detected. If no CPAHs are detected, quinoline is included in the Total Other PAH.

**Benzo(j)fluoranthene will coelute with either benzo(b)fluoranthene or benzo(k)fluoranthene. Benzo(j)fluoranthene can not be consistently separated by the laboratory. Therefore if present, it will be reported as benzo(b)- and/or benzo(k)-fluoranthene.

 2 Total Other PAHs (as listed in the CD/RAP (A.1.2), consists of the sum of:

acenapthene biphenyl indene acenaphthylene carbazole indole acridine dibenzofuran 1-methylnaphthalene 2-methylnaphthalene anthracene dibenzothiophene benzo(k)fluoranthene 2,3-dihydroindene naphthalene 2.3-benzofuran fluoranthene perylene benzo(e)pyrene phenanthrene fluorene benzo(b)thiophene pyrene

NA = Not analyzed for identified compound class.

³ Result reported as 0 indicates that all parameters were not detected above the laboratory detection limit, or were below 0.5 ug/l.

⁴ For this report, the analytical results prior to 2002 have been rounded to the nearest part per billion.

Table 6 Historical Summary of Other PAH, CPAH, and Phenolic Analytical Results 1988 Through 2011

Drift Aquifer Wells

All concentrations in micrograms per liter (ug/l).

P109				
Sampling	Total	Total	Total	
Date	CPAH ¹	Other PAH ²	Phenolics	
8-88	0 3	3	8	
10-88	0	4	0	
6-89	0	4	15.5	
5-90	0	5	0	
4-01	0	1	NA	
9-01 ⁴	0	0	NA	
5-02	0	0	NA	
9-02	0	0	NA	
5-03	0	0	NA	
8-03	0	0	NA	
4-04	0	0	NA	
8-04	0	0	NA	
4-05	0	0	NA	
9-05	0	0	NA	
5-06	0	0	NA	
8-06	0	0	NA	
5-07	0	0	NA	
8-07	0	0	NA	
4-08	0	0	NA	
8-08	0	0	NA	
5-09	0	0	NA	
8-09	0	0	NA	
6-10	0	0	NA	
9-10	0	0	NA	
6-11	0	0	NA	

P307				
Sampling	Total	Total	Total	
Date	CPAH ¹	Other PAH ²	Phenolics	
4-91	0	226	18.5	
8-01 ⁴	0	76	NA	
5-02	0	42	NA	
9-02	0	89	NA	
5-03	0	42	NA	
8-03	0	60	NA	
4-04	0	52	NA	
8-04	0	68	NA	
4-05	0	110	NA	
9-05	0	122	NA	
5-06	0	27	NA	
8-06	0	140	NA	
5-07	0	97	NA	
8-07	0	78	NA	
4-08	0	63	NA	
8-08	0	41	NA	
5-09	0	43	NA	
8-09	0	46	NA	
6-10	0	16	NA	
9-10	0	15	NA	
6-11	0	14	NA	

P308				
Sampling	Total	Total	Total	
Date	CPAH ¹	Other PAH ²	Phenolics	
4-91	0	98	10.5	
2-92	0	0	11.7	
10-94	0	41	NA	
5-01	0	2	NA	
8-01 ⁴	0	12	NA	
5-02	0	3	NA	
9-02	0	0	NA	
5-03	0	0	NA	
8-03	0	0	NA	
4-04	0	0	NA	
8-04	0	2	NA	
4-05	0	0	NA	
9-05	0	0	NA	
5-06	0	5	NA	
8-06	0	0	NA	
5-07	0	9	NA	
8-07	0	4	NA	
4-08	0	1	NA	
8-08	0	1	NA	
5-09	0	0	NA	
8-09	0	0	NA	
6-10	0	1	NA	
9-10	0	4	NA	
6-11	0	2	NA	

benzo(a) anthracene indeno(1,2,3-cd)pyrene benzo(a)pyrene quinoline* benzo(b)flouranthene benzo(b)flouranthene benzo(g,h,i)perylene dibenzo(a,h)anthracene

*Quinoline is included in the sum of CPAH if other CPAHs were detected. If no CPAHs are detected, quinoline is included in the Total Other PAH.

**Benzo(j)fluoranthene will coelute with either benzo(b)fluoranthene or benzo(k)fluoranthene. Benzo(j)fluoranthene can not be consistently separated by the laboratory. Therefore if present, it will be reported as benzo(b)- and/or benzo(k)-fluoranthene.

acenapthenebiphenylindeneacenaphthylenecarbazoleindoleacridinedibenzofuran1-methylnaphthaleneanthracenedibenzothiophene2-methylnaphthalene

anthracene dibenzothiophene 2-methylnaphthalene benzo(k)fluoranthene 2,3-dihydroindene 2,3-benzofuran fluoranthene penzo(b)pyrene fluorene penzo(b)thiophene 2,3-benzofuran fluorene penzo(b)thiophene

 $^{^{\}rm 1}$ Total Carcinogenic PAHs (as listed in the CD/RAP (A.1.1)), consist of the sum of:

 $^{^{\}rm 2}$ Total Other PAHs (as listed in the CD/RAP (A.1.2), consists of the sum of:

³ Result reported as 0 indicates that all parameters were not detected above the laboratory detection limit, or were below 0.5 ug/l.

⁴ For this report, the analytical results prior to 2002 have been rounded to the nearest part per billion.

Table 6 Historical Summary of Other PAH, CPAH, and Phenolic Analytical Results 1988 Through 2011

Drift Aquifer Wells

All concentrations in micrograms per liter (ug/l).

P112				
Sampling	Total	Total	Total	
Date	CPAH ¹	Other PAH ²	Phenolics	
8-88	0	0	0	
10-88	0	0	8.6	
6-89	0	0	35.7	
5-90	0	0	0	
2-92	0	0	0	
5-01	0	0	NA	
8-01 ⁴	0	0	NA	
5-02	0	0	NA	
9-02	0	0	NA	
5-03	0	0	NA	
8-03	0	0	NA	
4-04	0	0	NA	
8-04	0	0	NA	
4-05	0	0	NA	
9-05	0	0	NA	
5-06	0	0	NA	
8-06	0	0	NA	
5-07	0	0	NA	
8-07	0	0	NA	
4-08	0	0	NA	
8-08	0	0	NA	
5-09	0	0	NA	
8-09	0	0	NA	
6-10	0	0	NA	
9-10	0	0	NΔ	

W2					
Sampling Date	Total CPAH ¹	Total Other PAH ²	Total Phenolics		
8-88	0	0	NA		
10-88	0	0	NA		
6-89	0	0	NA		
5-94	0	0	NA		
6-11	0	0	NA		
9-11	0	0	NA		

		,	W9	
	Sampling	Total CPAH ¹	Total Other PAH ²	Total
L	Date	CPAH.	Other PAH	Phenolics
١	6-11	0	9	NA
ı	9-11	0	11	NA

W15				
Sampling Date	Total CPAH ¹	Total Other PAH ²	Total Phenolics	
5-90	0	11	NA	
2-92	1	8	NA	
5-94	0	1	NA	
6-11	0	0	NA	
9-11	0	0	NA	

Sampling	Total	Total	Total
Date	CPAH ¹	Other PAH ²	Phenolics
3-95	0	3,933	91
5-95	0	4,053	74
9-95	0	2,564	54
10-95	0	2,115	50
2-96	0	1,552	46
4-96	0	1,419	43
7-96	0	1,765	43
10-96	0	1,557	45
2-97	0	1,277	43
5-97	0	1,683	48
9-97	0	1,547	42
1-98	0	1,236	34
2-98	0	1,377	31
5-98	0	1,221	35
9-98	0	978	12
11-98	0	954	53
3-99	0	1,385	29
4-99	0	1,278	31
8-99	0	755	45
11-99	0	1,123	17
2-00	0	1,081	31
5-00	0	1,975	31
9-00	0	1,859	26
12-00	0	1,187	37
3-01	0	1,498	34
5-01	0	1,623	37
8-01	0	1,056	NA
10-01	0	1,095	42
3-02	0	1,205	27
5-02	0	1,214	NA
9-02	0	1,027	NA
5-03	0	981	NA
8-03	0	1,535	NA
4-04	0	1,260	NA
8-04	0	1800	NA
4-05	0	1396	NA
9-05	0	1,303	NA
5-06	0	1,327	NA
8-06	0	1,015	NA
5-07	0	898	NA
8-07	0	963	NA
4-08	0	1,776	NA
5-09	0	1,144	NA
8-09	0	1,308	NA
6-10	0	904	NA
9-10	0	788	NA
6-11	0	1,002	NA
9-11	0	433	NA
-	-		

W439

	P309					
Sampling Date	Total CPAH ¹	Total Other PAH ²	Total Phenolics			
6-89	0	1	0			
4-91	0	318	22.5			
5-01	0	27	NA			
8-01 ⁴	0	40	NA			
5-02	0	50	NA			
9-02	0	24	NA			
5-03	0	91	NA			
8-03	0	43	NA			
4-04	0	38	NA			
8-04	0	35	NA			
4-05	0	75	NA			
9-05	0	57	NA			
5-06	0	47	NA			
8-06	0	31	NA			
5-07	0	47	NA			
8-07	0	26	NA			
4-08	0	20	NA			
8-08	0	21	NA			
5-09	0	16	NA			
8-09	0	10	NA			
6-10	0	12	NA			
9-10	0	7	NA			
6-11	0	7	NA			
9-11	0	13	NΔ			

P310			
Sampling	Total	Total	Total
Date	CPAH ¹	Other PAH ²	Phenolics
4-91	0	33	8
5-01	0	13	NA
8-01 ⁴	0	31	NA
5-02	0	14	NA
9-02	0	10	NA
5-03	0	16	NA
8-03	0	18	NA
4-04	0	14	NA
8-04	0	37	NA
4-05	0	31	NA
9-05	0	28	NA
5-06	0	11	NA
8-06	0	15	NA
5-07	0	12	NA
8-07	0	9	NA
4-08	0	5	NA
8-08	0	8	NA
5-09	0	2	NA
8-09	0	0	NA
6-10	0	3	NA
9-10	0	2	NA
6-11	0	1	NA

Table 6 Historical Summary of Other PAH, CPAH, and Phenolic Analytical Results 1988 Through 2011

Drift Aquifer Wells

All concentrations in micrograms per liter (ug/l).

	W	420	
Sampling	Total	Total	Total
Date	CPAH ¹	Other PAH ²	Phenolics
3-88	0 3	3,242	440
5-88	0	3,420	330
8-88	0	2,477	220
10-88	0	1,148	44
3-89	0	2,400	120
6-89	0	3,400	129
9-89	0	3,400	220
12-89	0	3,400	110
3-90	0	3,950	239
5-90	0	2,430	231
8-90	0	3,150	244
12-90	0	3,030	228
3-91	0	4,200	232
6-91	0	2,494	221
9-91	0	4.967	210
10-91	0	4,163	194
2-92	0	1,526	177
6-92	0	3,229	204
9-92	0	2,281	167
10-92	0	2,374	236
3-93	0	4,337	18
4-93	0	2,929	207
8-93	0	1,825	136
11-93	0	2,052	148
2-94	0	2,033	109
6-94	0	2,181	151
8-94	0	2,026	147
10-94	0	2,082	151
3-95	0	2,431	143
5-95	Ō	1,873	134
9-95	0	2,523	91
10-95	0	2,332	113
2-96	0	1,968	121
4-96	0		130
7-96	0	2,165 2,725	
		,	87
10-96	0	2,164	118
2-97	0	2,324	122
5-97	0	3,343	134
9-97	0	2,151	261
1-98	0	2,483	140
2-98	0	2,938	124
5-98	0	2,933	160
9-98	0	3,144	80
11-98	0	2,570	180
3-99	0	3,314	200
4-99	0	3,414	170
8-99	0	2,425	140
11-99	0	2,345	170
2-00	0	2,312	150
5-00	0	4,441	190
9-00	0	3,070	110
12-00	0	2,500	90
3-01	0	3,680	110
5-01	0	6,956	300
8-01	0	2,535	140
10-01	0	3,608	190
3-02 5.02	0	8,578	110 NA
5-02	0	4,163	NA
9-02	0	3,981	NA
10-02	0	3,456	NA
3-03	0	3,558	NA
5-03	0	4,122	NA
8-03	0	3,148	NA
11-03	0	2,835	NA
3-04	0	3,776	NA
4-04	0	3,805	NA
8-04	0	3,167	NA
11-04	0	4,685	NA
3-05	0	4,005	NA
5-05	0	2,463	NA
9-05	0	4,447	NA
11-05	0	4,205	NA
3-06	0	3,605	NA
0 00	U	0,000	11/1

W420

W420			
Sampling	Total	Total	Total
Date	CPAH ¹	Other PAH ²	Phenolics
5-06	0	3,511	NA
8-06	0	3,782	NA
11-06	0	3,682	NA
3-07	0	3,444	NA
5-07	0	3,029	NA
8-07	0	3,209	NA
11-07	0	3,539	NA
3-08	0	3,397	NA
4-08	0	3,514	NA
3-09	0	2,073	NA
5-09	0	3,168	NA
8-09	0	3,483	NA
11-09	0	3,492	NA
3-10	0	2,911	NA
6-10	0	2,623	NA
9-10	0	2,389	NA
12-10	0	2,202	NA
3-11	0	2,277	NA
6-11	0	2,252	NA
9-11	0	1,762	NA
12-11	0	1,371	NA

W422			
Sampling	Total	Total	Total
Date	CPAH ¹	Other PAH ²	Phenolics
1st Quarter	0	27	11
2nd Quarter	0	57	0
8-88	0	77	24
10-88	0	50	84
3-89	0	50	11
6-89	0	50	14
9-89	0	60	20
12-89	0	50	13
3-90	0	75	21
5-90	0	60	14
8-90	0	90	14
12-90	0	60	18
4-91	0	67	13
9-91	0	-	17
10-91	0	88	18
2-92	0	121	16
6-92	0	872	-
9-92	0	91	9
10-92	0	89	28
3-93	0	94	0
4-93	0	96	10
8-93	0	81	16
11-93	0	74	16
2-94	0	61	0
6-94	0	66	7
8-94	0	66	30
10-94	0	59	11
3-95	0	54	11
5-95	0	62	5
9-95	0	53	14
10-95	0	29	10
2-96	0	24	12
4-96	0	26	11
7-96	0	26	9
10-96	0	23	8

W422			
Sampling Date	Total CPAH ¹	Total Other PAH ²	Total Phenolics
2-97	0	21	9
5-97	0	20	11
9-97	0	19	18
1-98	0	18	11
2-98	0	21	6
5-98	0	17	9
9-98	0	7	0
11-98	0	13	9
3-99	0	20	0
4-99	0	14	8
8-99	0	13	10
11-99	0	13	4
2-00	0	12	10
5-00	0	19	10
9-00	0	13	5
12-00	0	6	4
5-01	0	19	5
9-01	0	13	-
10-01	0	7	5
3-02	0	15	11
5-02	0	15	NA
9-02	0	9	NA
5-03	0	9	NA
8-03	0	4	NA
4-04	0	4	NA
8-04	0	1	NA
4-05	0	7	NA
9-05	0	9	NA
5-06	0	7	NA
8-06	0	0	NA
5-07	0	6	NA
8-07	0	9	NA
4-08	0	28	NA
8-08	0	10	NA
5-09	0	7	NA
8-09	0	5	NA
6-10	0	14	NA
9-10	0	9	NA

Figures

jj December 2012

Summary of Groundwater Monitroing Results For the Mt. Simon-Hinckley Aquifer - 2011 2011 Annual Report Reilly Site, City of St. Louis Park, Minnesota

Figure 1

File: Fig1_MSH

Summit Proj. No.: 0987-0009

Plot Date: 03-06-12 Arc Operator: PRB Reviewed by: WMG

Summary of Groundwater Monitroing Results For the Prairie Du Chien-Jordan Aquifer - First Half, 2011 2011 Annual Report Reilly Site, City of St. Louis Park, Minnesota

Figure 2

File: Fig2_OPCJ_1stHalf Summit Proj. No.: 0987-0009 Plot Date: 03-09-12

Arc Operator: PRB Reviewed by: WMG

Summary of Groundwater Monitroing Results For the Prairie Du Chien-Jordan Aquifer - Second Half, 2011 2011 Annual Report Reilly Site, City of St. Louis Park, Minnesota

Figure 3

File: Fig3_OPCJ_2ndHalf Summit Proj. No.: 0987-0009

Plot Date: 03-07-12 Arc Operator: PRB Reviewed by: WMG

-- = Not Sampled/Not Available

1 inch = 1,000 feet

Summary of Groundwater Monitroing Results For the St. Peter Aquifer - 2011 2011 Annual Report Reilly Site, City of St. Louis Park, Minnesota

Figure 4

File: Fig4_OSTP

Summit Proj. No.: 0987-0009

Plot Date: 03-09-12 Arc Operator: PRB Reviewed by: WMG

Summary of Groundwater Monitroing Results For the
Platteville Aquifer - 2011
2011 Annual Report
Reilly Site, City of St. Louis Park, Minnesota

Figure 5

File: Fig5_OPVL

Summit Proj. No.: 0987-0009

Plot Date: 03-09-12 Arc Operator: PRB Reviewed by: WMG

Summary of Groundwater Monitroing Results For the Drift Aquifer - 2011 2011 Annual Report Reilly Site, City of St. Louis Park, Minnesota

Figure 6

File: Fig6_Drift

Summit Proj. No.: 0987-0009

Plot Date: 03-09-12 Arc Operator: PRB Reviewed by: WMG

Attachment A

December 2012

i

Attachment B

December 2012

i

Attachment B 2011 Water Level Measurements

WELL	DATE	MP Elevation	DEPTH TO WATER	WL Elev	DATE	DEPTH TO WATER	WL Elev
		St. Peter			St.	Peter	
W14	6/14/2011	891.49	19.04	872.45	10/28/2011	23.00	868.49
W24		893.19	NM	NM	10/28/2011	25.90	867.29
W33R	6/14/2011	893.99	26.11	867.88		NM	NM
W122	6/15/2011	918.58	58.90	859.68	10/28/2011	58.17	860.41
W129	6/14/2011	916.33	47.82	868.51	10/28/2011	47.13	869.20
W133		921.06	NM	NM		NM	NM
W408	6/15/2011	923.53	49.87	873.66	10/28/2011	50.05	873.48
W409	6/15/2011	923.61	53.88	869.73		NM	NM
W410		908.04	NM	NM		NM	NM
W411	6/15/2011	896.25	31.82	864.43		NM	NM
W412	6/15/2011	915.17	48.75	866.42		NM	NM
W414	6/14/2011	919	55.01	863.99		NM	NM
		Platteville			Pla	tteville	
P101		926.37	NM	NM	10/28/2011	38.53	887.84
W1		923.28	NM	NM		NM	NM
W18		893.33	NM	NM		NM	NM
W20		895.83	NM	NM	10/28/2011	16.53	879.30
W22		897.06	NM	NM	10/28/2011	10.54	886.52
W27	6/10/2011	910.47	26.20	884.27	10/28/2011	26.01	884.46
W100		899.71	NM	NM		NM	NM
W101		918.03	NM	NM		NM	NM
W120		919.81	NM	NM		NM	NM
W121		922.85	NM	NM	10/28/2011	46.66	876.19
W123		909.36	NM	NM		NM	NM
W124		887.65	NM	NM		NM	NM
W130	6/13/2011	894.83	20.35	874.48	10/28/2011	20.15	874.68
W131		919.27	NM	NM	10/28/2011	36.77	882.50
W132		904.95	NM	NM		NM	NM
W143		905.31	NM	NM	10/28/2011	24.36	880.95
W421		895.86	NM	NM		NM	NM
W424	6/13/2011	917.57	33.22	884.35	10/28/2011	33.45	884.12
W426	6/10/2011	923.95	39.88	884.07		NM	NM
W428		919.4	NM	NM	10/28/2011	36.92	882.48
W429				0.00			0.00
W430				0.00			0.00
W431				0.00			0.00
W432				0.00			0.00
W433	•			0.00			0.00
W434				0.00			0.00
W435				0.00			0.00
W437		913.18	NM	NM	10/28/2011	29.16	884.02
W438		921.12	NM	NM	10/28/2011	38.56	882.56

Attachment B 2011 Water Level Measurements

	Drift 895.11 903.8	NM			Drift	-
		NM				
	903.8		NM	10/28/2011	12.14	882.97
		NM	NM	10/28/2011	21.82	881.98
			0.00			0.00
	913.1		913.10	10/28/2011	29.39	883.71
	923.29	NM	NM	10/28/2011	39.75	883.54
6/10/2011	925.16	42.02	883.14	10/28/2011	41.80	883.36
	921.48	NM	NM	10/28/2011	38.88	882.60
	919.45	NM	NM	10/28/2011	38.17	881.28
	923.98	NM	NM		NM	NM
						887.34
6/10/2011	891.21				7.83	883.38
	892.03	NM	NM	10/28/2011	8.10	883.93
						0.00
6/10/2011						885.45
	917.75	NM	NM	10/28/2011	37.60	880.15
	922.89	NM	NM	10/28/2011	45.63	877.26
			0.00			0.00
		NM	NM	10/28/2011	36.10	883.07
	895.88	NM	NM		NM	NM
	908.04	NM	NM		NM	NM
	917.51	NM	NM		NM	NM
	923.81	NM	NM		NM	NM
	919.4	NM	NM	10/28/2011	36.97	882.43
	924.9	NM	NM		NM	NM
			0.00			
Pra	irie Du Chien			Prairie	Du Chien	
				_		
_		6/10/2011 891.21 892.03 6/10/2011 894.47 917.75 922.89 919.17 895.88 908.04 917.51 923.81	6/10/2011 891.21 7.10 892.03 NM 6/10/2011 894.47 7.44 917.75 NM 922.89 NM 919.17 NM 895.88 NM 908.04 NM 917.51 NM 923.81 NM 919.4 NM 919.4 NM 924.9 NM	6/10/2011 891.21 7.10 884.11 892.03 NM NM 0.00 0.00 6/10/2011 894.47 7.44 887.03 917.75 NM NM 922.89 NM NM 919.17 NM NM 895.88 NM NM 908.04 NM NM 917.51 NM NM 923.81 NM NM 919.4 NM NM 924.9 NM NM 0.00 0.00 0.00	6/10/2011 891.21 7.10 884.11 10/28/2011 892.03 NM NM 10/28/2011 6/10/2011 894.47 7.44 887.03 10/28/2011 917.75 NM NM 10/28/2011 922.89 NM NM 10/28/2011 919.17 NM NM 10/28/2011 895.88 NM NM 10/28/2011 908.04 NM NM NM 917.51 NM NM NM 923.81 NM NM 10/28/2011 924.9 NM NM 10/28/2011	6/10/2011 891.21 7.10 884.11 10/28/2011 7.83 892.03 NM NM 10/28/2011 8.10 6/10/2011 894.47 7.44 887.03 10/28/2011 9.02 917.75 NM NM 10/28/2011 37.60 922.89 NM NM 10/28/2011 37.60 919.17 NM NM 10/28/2011 36.10 895.88 NM NM NM NM 908.04 NM NM NM NM 917.51 NM NM NM NM 923.81 NM NM NM 10/28/2011 36.97 924.9 NM NM NM NM NM NM NM NM NM NM NM

Attachment C

December 2012

i

13149, BISO, BISI, BISZ and BIS3, Phase 2 CRIM AT REILLY TAR SITE DRILLING PRICKIM AT

		•		BORII	NG.	LO	G		••0.	1007		• • •	JOB MG SHEET 1-519-078 1 gr	HO. HOLE HO.	_
\$170							coc	CINA	-£3		<u></u>	%E.	ANGLE FROM HORIZ. BEARING	2 3 (49	_
162.	74 16	COMP.	1769	13 12 E	•		<u> </u>		34:LL W		443	₩Q.		TOTAL DEPTH	
11.		COVER		COAE	un Er Out:		¥₽', € ?		EL TOP (45:+G	G		58.5"	_
SAW	*\ [44664 40#	₹ ₩€ :0	m 7 / FA		ASING	LEF	T IN	#0LE 34	4 /:	ENS:	,n	LOGGED SY:	56.5"	
TANK ILIN	DVANCE	AND	S S S S S S S S S S S S S S S S S S S	COME		NETA:			•	:	3	7	2. Huidubeo	MOTES ON: WATER LEVELS,	4
SAMPLE TYPE AND DIAMETER	THE CAN	SAMPLE RECOVERY	SAMPLE BLOWS	PERCENT		2, 112	3.0 6.	.9 417	ELE-45:0+	2,212,0	LHAPINIC	SAMPLE	DESCRIPTION AND CLASSIFICATION	WATER RETURN, CHARACTER OF DRILLING, ETC.	
<u> </u>	1	1	"		-				<u> </u>	<u> </u>	13	1	0-6' very coarsa brown sand with	Scarted }	M
·	_	_									No.	1 1	medium grain gravei. Fill. No sign of conceminance.	≈12:00.	
SS	-	'D - 5'	33		á	i i	Į.	a				4		Changed to smaller core	
										ļ,		111111111111111111111111111111111111111	o'-t2' soft black pest. No sign of	catcher after sample 3. Casing problems	•
SS	2	, ,	12		2.	3	4	5	1			1		0 ≈15. Damaged 5' section	[
	Γ			·							Ì			changed.	Г
<u> </u>	L	1					_		:		1	<u></u>		Boulder # 30°. RB thru it. Pulled all	-
S 5	2,	þ.a'	28		l6	и	9	8	:	- 15	}	3	LS & mafic tocks. Crasoca odor.	casing to ie- troduce 5"7/8	١
											1			roller bit. Drilled thru a	
	2.	1					_			_	1	-		3.5' boulder ≈ 32'.	r
55	-	0	25		7	8	3	10		- 20	1	1	in 70. Asia tius sifth and ' Sish'	Bedrock d	-
	L	<u> </u>											NO SIEN DE CONCEMINANCS.	Finished 11/22	L
55	2'	G	64		21	20	24	20		~ 25		5		0 10:00.	Ŀ
										''	Ď ** Ž **	3	25'-35' gray <u>till</u> . Clayey silty sand with some gravel of medium size.		
_	-	1									3.5	-	Secomes more clay rich at the bottom. No sixn of concamination.		卜
SS	2'	2.0'	61		37	21	L9	21		- 30	10	٥			F
															L
55	2.	0.5	36		19	9	ιο	1.7			1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7			
										- 35	1		35'-42' pourly sorted fine to medium sand with summ gravel (granitic and		
	<u> </u>	1.					-				1	-	maric rocks), agate chips. No sign of contuminance. Brown.	•	-
SS	12.	1.5	49		15	14	16	19		40	4	6		ı	a
											1	-			
33	2.	2.0	101		סנ	10	1,1	40		-	1	<u>_</u>	42'-47'. Moderacely sorted very course sund. Mosely rock fragments. Brown.		100
	T	+						Ť		45	4		Crease smell.	•	۴
31	2001	1200)) n : 17	. 1= (V 71			91	7.5		1	<u>+</u>		HOLE NO	1
0.0			* #170#	(4. 0.	01=(4					e C	CD4	ر ع	f Louisiana's Lake	5 14:	1

## ## ## ## ## ## ## ## ## ## ## ## ##	47'-13' brown sand. No contaminants. 49'-36.5' red cill sand, clayer suit. Fine gravel of maid crox and LS. No sign of contamination.	PPA BORIN	G **7.55*	08 40 SA 1-617-378 3	OF 2 B 149	
35 2' 1.0 101 20 19 36 66 47'-13' Stown Sand. No contaminants. 49'-36.5' red mail sand. mail		TAPE ANY MAN ANY MA	6.6945.00		MOTES ON:	8 5
35 2' 1.0 101 20 19 36 66 47'-13' Stown Sand. No contaminants. 49'-36.5' red mail sand. mail		ATTOMAN TO THE PROPERTY OF THE	3 4	331- 02-104	CHARACTER OF	A me uk
\$\$ 2' 2.0 19e \$9 76 62 58 \$\\ \frac{56.5}{30.5} \cdot	\$5 2' 2.0 196 \$9 76 62 53 \$3 \$6.3'-58.5 Weathered Lineatone. Clean. \$5 0.3' 3.55 \$3.5'.		36 4ó			T.
56.5'-58.5 Weathered limascone. Clean.	56.3'-58.5 weathered limitations. Clean. 12 30:20 of noise = 58.5'.		33	ani 18. <u>No</u>		
56.5'-58.5 Weathered limascone. Clean.	56.3'-58.5 weathered limitations. Clean. 12 30:20 of noise = 58.5'.	SS 2' 2.0 196				
55 [0.5] 3.5] 300	55 0.5			sume. Cles	ia.	
		ss 0.5 0.5 J	()		i 	
					-	

MINNESOTA UNIQUE WELL MINNESOTA DEPARTMENT OF HEALTH WELL OR BORING LOCATION WELL AND BORING RECORD County Name 753534 Minnesota Statutes, Chapter 1031 Hennepin Township Name WELL/BORING DEPTH (completed) DATE WORK COMPLETED Township No. Range No. Section No. Fraction 183 July 17, 2007 St. Louis Park 28N 21W 17 NE SW DRILLING METHOD Latitude degrees minutes seconds LOCATION: ☐ Driven 图 Rotary Cable Tool Dug Longitude degrees minutes seconds Auger Jetted or Fire Number WELL HYDROFRACTURED? Yes X No DRILLING FLUID Sketch map of well/boring location. bentonite Show exact location of well/boring in section grid with "X." From_ ft. To_ USE Domestic Monitoring Heating/Cooling Environ. Bore Hole ☐ Industry/Commercial ■ Noncommunity PWS ☐ Irrigation Remedial Community PWS Elevator Dewatering CASING MATERIAL Drive Shoe? X Yes No HOLE DIAM. ▼ Welded 10** X Steel Threaded Plastic CASING Weight Specifications _{ft.} 90 10 16 in. to 90 lbs./ft. _{ft.} 163 7/8 in. to 163 ft lbs./ft. PROPERTY OWNER'S NAME/COMPANY NAME lbs./ft. City of St. Louis Park OPEN HOLE Property owner's mailing address if different than well location address indicated above. 183 Make From 5005 Minnetonkk, Blvd Туре Diam. St. Louis Park, MN 55416 Slot/Gauze Length ft. FITTINGS Set between ft. and Measured from grade STATIC WATER LEVEL ft. Below Above land surface Date measured 7/16/07 WELL OWNER'S NAME/COMPANY NAME PUMPING LEVEL (below land surface) City of St. Louis Park ft. after _hrs. pumping_ g.p.m. Well/boring owner's mailing address if different than property owner's address indicated above. WELLHEAD COMPLETION Pitless/adapter manufacture Model ☐X Casing Protection 10" x 90 in. above grade At-grade (Environmental Well and Boring ONLY) GROUTING INFORMATION 0 _{To} 90 58 Yds. X Bags From 411 To 163 70 Yds. X Bags HARDNESS OF GEOLOGICAL MATERIALS COLOR FROM TO MATERIAL Yds. Bags NEAREST KNOWN SOURCE OF CONTAMINATION backfill black 0 10 direction Well disinfected upon completion? Tes X No gravel & sand 10 70 mixed X Not installed Date installed_ 70 87 rock hard gray Manufacturer's name, HP shale 87 92 gray Length of drop pipe_ __ ft. Capacity_ soft 92 Type: Submersible L.S. Turbine Reciprocating Jet ___ 100 sandstone yellow ABANDONED WELLS sandstone white soft 100 150 VARIANCE Was a variance granted from the MDH for this well? ☐ Yes 🕱 No TN#_ 150 183 sandstone white hard WELL CONTRACTOR CERTIFICATION This well was drilled under my supervision and in accordance with Minnesota Rules, Chapter 4725. The information contained in this report is true to the best of my knowledge. Use a second sheet, if needed. REMARKS, ELEVATION, SOURCE OF DATA, etc.

1,133R

IMPORTANT - FILE WITH PROPERTY PAPERS 753534 WELL OWNER COPY

Certified Representative Signatur

Stevens Drilling & Env. Svc Inc

86654

Certified Rep. No.

Lic. or Reg. No.

7/19/07

Randy Johnson

Licensee Business Name

Minnesota Unique Well No.

165578

County Quad Quad ID Hennepin Minneapolis South 104A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING RECORD

Minnesota Statutes Chapter 103I

Entry Date Update Date Received Date

08/24/1991 06/03/2004

					•			
Well Name U.S.G.S. WELL W-122					Well Depth	Depth Completed	Date '	Well Completed
Township Range Dir Section Subsection	ns Elevation	920 ft.		- /./	239 ft.	239 ft.		08/06/1979
117 21 W 21 BADBCD	Elevation Method	7.5 minute top 5 feet)	oograpnic ma	p (+/-	Drilling Method			
Well Address ST LOUIS PARK MN					Drilling Fluid 	Well Hydrofractured? From Ft. to Ft.	Yes No	
					Use Other (specify in rema	arks)		
Geological Material SAND & GRAVEL	Color YELLOW	Hardness		To 33	Casing Type Joint No I	nformation Drive Shoe?	Yes No A	Above/Below 0 ft.
CLAY & GRAVEL	TAN			55	Casing Diameter	Weight	Hole Dia	meter
SAND MUDDY SAND & GRAVEL	BROWN			70 120	4 in. to 217 ft.	lbs./ft.		
SANDSTONE & GRAVEL	BROWN WHITE		-	237		to 239 ft.		
SHALE	BRN/GRN		237	239	Screen NO Make Ty	уре		
					Diameter	Slot/Gauze Le	ength Set	Between
					Static Water Level 35 ft from Land surface	Date Measured 08/06/1979		
					PUMPING LEVEL (below la 35 ft. after hrs. pumping	nd surface)		
					Well Head Completion Pitless adapter manufacture	r Model		
					Casing Protection	12 in. above grade		
						-		
REMARKS					At-grade (Environmen	tal Wells and Borings ONLY)	-	
GAMMA LOGGED 10/9/79.					Grouting Information We	Il Grouted? Yes	No	
Located by: Minnesota Geological Survey	Method: Digitized - sca Table)		ger (Digitizing	l				
Unique Number Verification: N/A System: UTM - Nad83, Zone15, Meters	Input Date: 01/01/1990				Nearest Known Source of	Contamination		
System. OTM - Naudo, 2011e13, Meters	A. 4/21/0 1. 49/550	'			_feet _direction _type			
					Well disinfected upon comp	etion? Yes	No	
					. —	d Date Installed Model number HP <u>0</u> V apacity _g.p.m Type M	'olts laterial	
					Abandoned Wells Does pro	operty have any not in use and	d not sealed well(s)?	Yes No
					Variance Was a variance g	ranted from the MDH for this w	vell? Yes	No
Borehole Geophysics Yes					Well Contractor Certification			
First Bedrock St.Peter Sandstone	•	St.Peter			Renner E.H. & So		<u>02015</u>	
Last Strat St.Peter Sandstone	Depth to	Bedrock 120 1	ft.		License Business N	lame Lic. (Or Reg. No.	Name of Driller
County Well Index C	Online Repor	t			165578			Printed 8/21/2012 HE-01205-07

Preliminary Evaluation of Ground-Water Contamination by Coal-Tar Derivatives, St. Louis Park Area, Minnesota

By MARC F. HULT and MICHAEL E. SCHOENBERG

Prepared in cooperation with the Minnesota Department of Health

Table 1. Data on selected wells in the St. Louis Park area, Minnesota—Continued

Township and range	Site identification (lat and long)	Minnesota unique well number	USGS project well number	Owner name or other identifiers	Driller	Date drilled	Reported log, in feet	Land surface altitude, in feet	Reported depth of well, in feet	Diameter, in inches, and depth, in feet, of casing	Aquifer(s) open to well bore	Water level, in feet	Date measured	Field measurement status
117.21.16 DCB3.	445634093205903	160030	W116	do	E. H. Renner	-04-79	0–67 Qd	909.59	67	0–4 in. 0–63	Qd	35.01	06-05-79	O
117.21.16 CDB3	445617093211502	160031	W117	do	do	04-79	0-72 Qd	917.73 MP	72	4 in. 0-68	Qd	39.68	06-05-79	o
117.21.20 CDC1.	445516093222501	216088	W118	Minneapolis Park Board- Meadowbrook - Golf Course.	do		- 0-80 Qd 80-89 Opl 89-245 Osp 245-370 Opc 370-485 €j 485-487 €sl	905	487		Opc-Csl	_		-
117.21.20 DAC1.	445527093215201	216009	W119	do		06-35	0-74 Qd 74-82 Opl 82-90 Ogl 90-252 Osp 252-375 Opc 375-465 €j 465-502 €sl	890	502	16 in. 0-77 12 in. 77-257	Ope-€sl	54.5	. 06-28-35	
117.21.16 DCA2.	445014093212802	165516	W120	Monitoring well	E. H. Renner	-07-79	0-95.5 Qd 95.8-98 Opl, (weathered) 98-107 Opl 107-108.6 Ogl		105.7	4 in. 0-98	Opi	38.84	07-12-79	G,0
117.21.21 BBD1.	- 445558093212001	165577	W121	do	do	07-79	0-110 Qd 110-115 Opl, (weathered) 115-117 Ogl	918	113.25	4 in. 0-109	Opl	53.58	07-18-79	G,O
117.21.21 BADI.	445557093210901	165578	W122	do	do	08-79	0-120 Qd 120-212 Osp 212-239 Ospl	920	239	4 in. 0-217				G,0
117.21.21 BBC1.	- 445559093213201	216129	W140	Cambridge Brick						4 in.	Opl?			D
117.21.17 DDD5.	- 445607093214203	216051	W143	6425 Oxford St			0-70 Qd 70-90 Opl			4 in. 0-70	Opl			G .
28.24.06 BCD2.	- 445634093204102	216128	W144	Interior Elevator			 ,	 .		· <u></u>				F

UN: State		FFF. UM I L.L	40c1	79	-		Dist	rict o	r Proj	ect:_				ريد	arfic	ENTIAL
	- ININN	Co.	inty ffe	vstepin_	Town <u>S</u>	LouisE	ark	FILE L	OCATIO	N NO.	:				94	COURT
		NG INFORM		ā							WELL	. INF	ORMAT	TION	ة أحد من المناطقة أ	
or(s) <u>U</u>	565 - S:_DES	MC C	Mou	9/2/	_		Well	No.	(uscs)	:_ <i>L</i>	dell	<u> </u>	W,	122	_51	Lau
type:	de Re	CON	No. Co.	probe	_ `			1	Other: Map or Site d	Quad						
or type:					-		Agen	cy or (
:spacing:						1	· . 70m	Add	iress:							
enoth, cab	le head to	detector	-//	ft		1	Log N	M.P. <u>To</u>	414 q				£	Log T	D 2.	32 2 3 9
g speed: rt. scale:		ft/mi	8	up dowr			Ivne	at tir	rish:							
	•	ULE SETTI		-			. (Casing:	Elev	/. of	top_			ft/	in Be	ove low L.S
switch (ra	te or coun	ts):0-2	င္တေ cps	chart div	(or)			٠.	1.0.	_#	*	front	-3.6	to 2	17,	type
		(cir		full scal applicable)					1.0	_	<u></u>	from		to_		type type type
Bat 70	∉ se Base, zero		ression): // 0 r	Dial Div.	-		Cement	fron	n	t	° <u></u>	•	-		
ivity Pot. mination Po	(Span): ot.: /2	8.58	0	Dial Div. Dial Div.			0pen	hole o	i amete	er:	f	rom_		to		type
pulse: switch: r	/2 normal; re	volts; verse	Polarit	V Neg			Fluic	i level	ı:	ft/		_				
scale:				cps chart API full s	div (or) cale					·		At Belov	v L		Top Cs	
				as applicat	le)	,	Fluid Fluid	type:	t.:			-	oh	m -m	_ tem	Ρ
on Pot.:		RDER SETT			Ch 3		Drill Add	ler: dress:								
ivity Pot.:				= =			Date	of rig starte	:					mplete	ed	
	of											be ús	ed t	o fulf	Filto	rivate co
5:			 					obli	gation	is.		JC U.			тт. р	i i vate co
			·······				0ther	data	and lo	gs a	vaila	ble t	for t	his we	≥11:	
				<u> </u>					 -							фсро
						1250	5	T	HI					H	THE	50
<i>jl</i>						Mp T	p .	csq				- - - -	j-	- -		50
							-	. 0								
			-										11			
			-													
Ex.													##			
				2					HE							
					l							: 1 1 '				a francisco de final
li .		-3		_								Fili	1:-			
100																
100																
100																
100																
100																
100																
100-																
100 June																
100 Thompson of the Commission																
100 Took of the same of the sa						160										
100						150										
100		940				160										
100 Test Mannes Man		94022%				150										
100 Thompson of Lang Swinner Man May Comment of the		9402224				160										
100		9402224				160										
100 Till book for the state of		9402224				150										
100 Land Land Land Land Land Land Land Land		9402224				150										
100 Took of the state of the st		2224				750										
100 Carl Manual	5	2224				750										
100 - 100 -	5	2224				7 <i>50</i>	2									

	*																						
:KL	eut rm	NUC	LEA	R L	oct	79					Dist	-:	05.5	EOLOG Proje	- t ·								
T101	N: State_/	MINA	<u>, </u>	Count	y <u> </u>	NA/A	pi.v	Town_	st.L.	u = 1	Bok	FILE	LOCA	TION	NO.	:			- -	Jafi Jafi	Cen:	TIAL UST	PUR.
			ING IN													WELI	LINF	ORMA	ربريا 110۸	. ده د سندسنته	ا مانده منه [. ننده منه	-a.c.	unde -4 j
ator omen	r(s) <u>//5</u>	55	ME (Tulla	ugh	, 		-			Well	No.	(US	GS):	We							`	_P.
er t	nt Address: type: We be:	Re	Com	No.	Co.	-p	-be	- -					Map	er:_ or (e des	Quad_		1						
ce t	type:_ _sc type:_ tize:		2m62	CON_			MC	.			Agen	су о	r Own	er:	<u>U</u> S	45							
len	spacing: ngth, cable tion:	head t	<i> 6</i> o dete S	ctor	ocer 11	ft_	i n				Alti Log I	tude 1.P.	of L	.s.—	s g				Log	TD	23	7	
ing	speed: . scale:			t/mi		пÞ	cps down				Top Type	l og	inter	val:_ val:_ h:	_0			f	t "				139
		мо	DULE S	ETT I NG	S .						(Casir	_	Elev.						t/in			s.
e sw	itch (rate	or cou	nts):_ _	0-100 (circle	Cps Charles	full	t div	(or)						I.D. I.D.	+	<u>.</u> 	from from	-3.	5_ t	<u>.21</u>	<u>7</u> , t	ype_	st es
. sw	itch:	4						,				Cemer		from_			from		t _	° <u> </u>	, t	уре	
tion itiv rimi:	Pot. (Basity Pot. (nation Pot. lse:	e, zer Span): :	o, or	suppre 0 \$	ssion) 35	Dial (95 0i. Div.	al Div	.		Perf. Open	. int	erva dia	l(s) meter	fro	f	rom	t			,	type_	
,, ,,	MICCHI. 1101	mar, re	everse	ts; Po			\boldsymbol{A}				Fluic	i lev	/el: <u>Z</u>	<u>6</u> 4	ft/i		rom_ Above	 e	_to_		-		
. 1 5	cale:	·····		(ci	A	PΙζfι	nařt d 111 sc licable	ale	·)	٠,	Fluid						At Belov		L.S.	_	Csg temp		°F,
		REC: Ch	ORDER S					h. 3			Drill	res er:_	iist.					of	nm-m		remp		「,
	Pot.: ity Pot.:			_		_		ر	• . •		Type Date	star	ig: ted:						omp l	eted			
	of					F					Aquif NOTE:		•			to	be ne					ivato	cont
K5:_									_			ob	liga	tions	•								CONT
			,						-	,	Other	-a(_ an	. 10g	- dV	- 1 a		or t	.115	well	·—		
		1: -	·	1]		1			44.	41			1 - 1 - 1		111		-				*	GPO 680
	325		1				 			11	150	4	S					1			1	8)0	
					1 2													7					
NADE IN U.S.A.												Ħ									7		
MAG														111	117								
l			==		<u> </u>		-		 						-	+					- }. - -		
			<u> </u>	$ \leftarrow $					<u> </u>				<u>414</u> 					H					
				7				-									+		<u> </u>				
				2		++				-		-/) - 5	<i>0</i> 0	53	5-	7-1	95					
		1-1					1-1-1		35	N										+ :		36	5
CHAIR																							
١	von.					掛															H		
														Ti.;				Ħ					
				.1.1.1	HH.						 												
													-					+ :					
								-	~									Fr:					
											 	<u> </u>		FI-H-	T-1-1	1-1-1		 	-1-1-	•	· ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		
								>								1-1-1-							
		-		==			~																
		1								<u> </u>											žŠ		
																					9402225		
	200	 							J		 	+ -					+-				340		
									5	-					-		TH						
	7 - 1 - 1								Lin						 				<u> </u>			lai i-i	
		1	-,						Fill						_			- -			111		
								7	TD:	31					Lit		+ -	LLL		1			

	N: State M				own		istric	.S. GEOLOGI t or Projec E LOCATION	t: NO.:	COLS	oblavski ro sabat	ces Divisi PÜRSUA ORDER	NT
rato	r(s) <u> 1156</u> nt Address:]	LOGGING IN					/ell No	. (USGS):_		127	MATION	F / 2	Durk
ger ol typ ecto	type: //e// pe: // do r type: //s	Recon	+10N	pool				Map or Q Site des	uad_ cription	1	79.1- 3		
irce s	type: size: spacing: ngth, cable he tion:	C	Specer				لدخامات	Address: e of L.S. . Tap 4" interval:			Log TD	231	ft
ging	speed: t. scale:		t/in	down			op log	interval: finish: ing: Elev.			_ft Well _ftft/in		s.
le si	witch (rate o		O-IK cps (circle as ap	full scale	(or)						3· 6' to <u>21</u> 3 toto	7, type	Teel
1 - 1 -	witch: n Pot. (Base vity Pot. (S ination Pot.:	7	suppression 9.	65 : 80 is	al Div.	F	erf. i	ent: from_ nterval(s) le diameter	from		toto	, type_ _	
ut p	ulse: switch: norm scale:	al; reverse	ts; Folarity_	os) chart di	iv (or)			evel : <u>76.4</u>	ft/in		L.S., To	p Csg	
		RECORDER Ch l	(circle as	s applicable	e) h 3	1	fluid r Oriller Addre	ss:	R		ohm-m	temp	°F, °C
siti	n Pot.: vity Pot.: of_					(Type of Date st	rig: arted: or formati			completed		
	:		· 					This log is obligations ata and log	•				
						-						*	rgPO 680-02
	-335 C	75				745	15					Voj	
40. WH		<u> </u>											
CHART NO. WH		24	5										
		55											
IEXAS, U.S.A.													
	1990 - 3					1 22	85 C1	0-1K	3.5	∠ 8.		358	5
алтер, нов	\$												
INSTRUIMENTS INCORPORATED, HOUSTON,	/W }												
STRUIMENT			5										
TEXAS IN			Š										
			3										
	ေ												68
	9402223												
		3											5 S
j	200	7											
12 E 14 0.5.A	11			T-1	(4,24.2)		! • • • •	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;					
M. 2.5 14 U. S. A.									(- + 1 1 -	S	et l	T - T : 1 ! !	

Minnesota Unique Well No.

434042

County Quad Quad ID Hennepin Minneapolis South 104A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING RECORD

Minnesota Statutes Chapter 103I

Entry Date Update Date Received Date 01/14/2009 01/14/2009

Well Name W-410					Well Depth	Depth Completed	Date W	ell Completed
Township Range Dir Section Subsections		ft.			185 ft.	125 ft.	09	9/20/1989
117 21 W 17	Elevation M	etnoa			Drilling Method Multiple metho	ds used		
Well Address 6425 OXFORD ST ST LOUIS PARK MN 55416					Drilling Fluid Bentonite	Well Hydrofractured? From Ft. to Ft.	Yes No	
					Use Monitor well			
Geological Material SAND CLAYEY SAND	Color BROWN BROWN	Hardness SOFT MEDIUM	From 0 15	To 15 25	Casing Type Steel (black or low No Above/Below 2.25 ft.	w carbon) Joint Welded	Drive Shoe?	Yes 🔽
SILTY F. SAND; T. GRAVEL	BROWN	MEDIUM	25	55	Casing Diameter	Weight	Hole Diame	eter
MED. GRAVEL; T. SAND PLATTEVILLE LIMESTONE	VARIED GRAY	HARD V.HARD	55 78	78 93	18 in. to 90 ft.	70.59 lbs./ft.	18 in. to	90 ft.
GLENWOOD SHALE	GREEN	MEDIUM	93 98	98	12 in. to 95 ft.	29.56 lbs./ft.	18 in. to	95 ft.
ST. PETER SANDSTONE ST. PETER SANDSTONE	WHITE WHITE	SOFT SOFT	130	130 184	6 in. to 105 ft.	18.97 lbs./ft.	12 in. to	130 ft.
					Open Hole from ft. to ft.			
					Screen YES Make JOHNS	ON WIREWOUND Typ	e	
					Diameter Slot/Ga 3 40	u ze Length 85	Set Between 85 ft. and	94 ft.
					Static Water Level			
					25 ft. from Land surface Date PUMPING LEVEL (below land s			
					64 ft. after 30 hrs. pumping 8			
					Well Head Completion Pitless adapter manufacturer Casing Protection	Model 12 in. above grade		
					At-grade (Environmental V	/ells and Borings ONLY)		
REMARKS THIS WELL WAS DEEPENED & NEW SCREEN IN ORIGINALLY SCREEN FROM 105-125 FT.	STALLED 0-20	-1989.			Grouting Information Well Gr	outed? Yes	No	
					Grout Material:	from to 105 f	t. 2	yrds.
					Grout Material:	from to 95 ft.	2	.75 yrds.
					Nearest Known Source of Con	tamination		
					_feet _direction _type			
					Well disinfected upon completion	n? Yes 🔽	No	
					Pump Not Installed I Manufacturer's name Moo Length of drop Pipe_ft. Capa	del number HP _ Vo		
					Abandoned Wells Does proper	ty have any not in use and	not sealed well(s)?	Yes Vo
					Variance Was a variance grante	ed from the MDH for this w	/ell? Yes	No
					Well Contractor Certification		100	110
First Bedrock Aquifer					Bergerson-Caswell		<u>27058</u>	GLENN/TONY
l	Bedrock ft.				License Business Name	e Lic. (Or Reg. No.	Name of Driller
County Well Index Onlin	e Repoi	rt			434042			Printed 11/7/2012 HE-01205-07